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Chapter 1 Introduction 

The electric power industry is undergoing worldwide deregulation and restructuring. 

In the past, one company provided all the functions of electric service (generation, 

transmission, distribution, and retail sales). With competition, these functions are separated 

into different companies. Generation, or production of electricity, was deregulated in North 

America around 1995, resulting in an ample supply of new, cleaner and more efficient power 

plants. With electric competition, retail electric providers sell electricity and provide 

functions such as customer service and billing. Retail Electric Providers compete for 

customers business by offering lower prices, renewable energy options, added customer 

service benefits or other incentives. 

On the other hand, deregulation also brought a great challenge and opportunity for 

the electric power industry. Power producers, distributors and their suppliers are asked to be 

innovative and satisfy the consumers demand for more choices while operating 

competitively. The Independent System Operator (ISO) and transmission service provider 

(TSP) are encountering uncertain power flow patterns in the system due to unpredictable 

bidding strategies of the power producers. If the ISO or TSP fails to predict or detect 

congestions due to these patterns, the reliability of the power grid will be significantly 

reduced. The deterioration of the system operating conditions makes the power system more 

vulnerable to disturbances. In many cases, power is transferred via a highly stressed network. 

Large scale system instabilities have been experienced all over the world. On July 2, 1996, 

the WECC system experienced a major blackout caused by voltage instability. One month 
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after this disturbance, on August 10, 1996, another major blackout occurred in WECC. This 

time, as a result of undamped oscillations, the system split into four large islands. Over 7.5 

million customers experienced outages ranging from a few minutes to nine hours. On August 

4, 2000, poorly damped power oscillations were observed across the WECC system 

following the Alberta separation [1]. In the New England Electric System, system monitoring 

devices also recorded oscillatory responses of major event [2], 

Currently, in North America, ISO only considers thermal limits in identifying 

transmission congestion, i.e., for any post-contingency, no transmission line, transformer or 

breaker's thermal rating is exceeded. Some transmission companies also started to apply 

voltage stability analysis software to monitor voltage stability in operations. In June, 2005, 

the ERCOT (Electric Reliability Council of Texas) ISO became the first ISO in North 

America to implement voltage stability assessment in real time operations. For every hour, 

VSAT (Voltage Security Assessment Tool by Powertech Labs) is executed with the most 

updated EMS state estimator results. More than two thousands contingencies and six power 

transfer scenarios are considered. Any transmission congestion constrained by a voltage 

stability margin will be identified and considered in market operations. 

With VSAT, long execution time is still a problem in power system real time 

operations. Two thousand contingencies are defined, but only around two hundred 

contingencies are chosen for the next step screening process according to geographic 

information. Finally, around twenty of the most critical contingencies are picked for P-V 

curve tracing to find a voltage collapse point with respect to six different transfer increasing 

scenarios. 
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Oscillatory stability also plays a very important role in maintaining power system 

security as indicated in the disturbances mentioned in the previous pages. Recently (May 27, 

2005) an apparent protection system failure in Hydro One's system in Canada produced 

power system oscillations and line outages that effected frequency in the eastern inter 

connection. 

Oscillatory instability is an inherently nonlinear phenomenon that is related to 

bifurcation from the viewpoint of nonlinear dynamic systems. Substantial research has been 

conducted to help understand and analyze the mechanism of this type of instability based on 

Hopf bifurcation theory [3], [4], [5], [6]. Hopf bifurcation occurs when a pair of complex 

eigenvalues crosses the imaginary axis when a parameter in the system is varied. Depending 

on the type of Hopf, this may lead to unstable oscillations in the system. Improper tuning of 

generation control parameters may lead to Hopf bifurcation [7], [8], [9]. Nonlinear load may 

also lead to Hopf bifurcation [10]. References [4], [11], [12] present an analysis related to a 

1992 disturbance on the midwestem segment of the US interconnected power system and the 

resulting oscillations caused by line tripping. It confirms that the event was indeed related to 

a Hopf bifurcation. 

The essential information of a Hopf bifurcation can be obtained in terms of 

eigenproperties of the reduced power system matrix of a structure-preserving power system 

model described by differential algebraic equations [13]. This matrix is called the dynamic 

system state matrix. 

Damping also plays an important role in power system oscillations. Margin related 

to damping can be defined as the amount of additional load on a specified pattern of load 
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increase that would cause the damping ratio to reach its minimum limit. In the oscillatory 

stability assessment, in order to keep the system far away from the minimum damping limit, 

the damping ratio margin needs to be checked for each contingency and power transfer 

scenario. 

WECC [14] recommend the following criteria in determining the safe operating 

limits: 

The operating point is acceptable from the damping standpoint if: 

With the path flow increased by the larger of 100 MW or 5 percent of the power 

transfer, any N-l contingency will not result in undamped oscillations or instability; 

With the path flow increased by the larger of 100 MW or 2 1/2 percent of the power 

transfer, any N-2 contingency will not result in undamped oscillations or instability 

The motivation of this research is to establish a framework that can assess the 

oscillatory security level of the current operating point by quickly identifying and estimating 

the oscillatory stability margin and damping margin for pre-contingency and post-

contingency conditions. This framework provides the relationship between the system 

parameters (including controllable parameters) and the oscillatory stability and damping 

margins. This information can be effectively used for optimal control design to avoid 

undesirable system behavior. 

The thesis is organized as follows: 

In chapter 2, the Differential-Algebraic Equation (DAE) model of the electric power 

system will be introduced.. 
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Chapter 3 provides a critical review of various existing methods that are available 

for oscillatory stability assessment. Chapter 4 presents, an eigenvalue tracing methodology to 

identify an oscillatory stability margin, as well as a damping margin. The methodology is 

demonstrated through the New England test system. Computational issues related to this 

technique are discussed in detail. Chapter 5 proposes algorithms to trace oscillatory stability 

and damping margin boundaries. Chapter 6 concludes with the major contributions of this 

thesis. 
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Chapter 2 The DAE model of electric power systems 

2.1 Formulation of the Power System DAE model 

The studied power system is assumed to have n buses and m generators. Every 

generator is assumed to be equipped with the same type of speed governor and excitation 

control system, but the dynamic model parameters of different generator could be different. 

The formulation of power system modeling will be presented in this chapter. The most 

commonly used power system notations are adopted. 

2.1.1 Synchronous Generator 

Without loss of generality, the mth generator's rotor angle can be chosen as the system 

angle reference. The two-axis model [3] [15] describing the synchronous machine dynamics 

can be given as: 

Sf =  ( € » f  - <om>o0 i =\,...,m -1 (2.1.1) 

= M i  '  [  P , n i  ~  A ( ® /  ~ ( Ù m ) - ( E q i  ~  X d i 1  d i ) 1  q i  ~  ( E d i  +  X q i 1 q i ) 1 d i ]  

* = 1 m (2.1.2) 

4 =%% - JCXJ ''=1 " (21.3) 

' =1  "  (Z1 .4 )  

Where com is the system frequency, o, is the machine frequency, namely, generator 

angular speed and coo is the system rated frequency (377.0 rad /sec=60Hzx2ir rad). Icu and Iqt 
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are direct axis and quadrature axis currents respectively; E'di and E'qi are transient direct axis 

and quadrature axis EMF respectively; Tjoi and Tqoi are direct axis and quadrature axis open 

circuit time constants respectively; X'di and X'qi are direct axis and quadrature axis transient 

reactances and Rsi is armature resistance of the machine; Mt is inertia constant and D, is the 

damping constant of the machine. All the quantities are per unit except COQ. 

Interface voltage equations to the network are given as follows: 

Eqi = Vi cos(ô;- -6,.) + R s iIq i  + Xd lId i  (2.1.5) 

Ecu = K- sin(ôi -6 ,  ) + RsiIdi ~ XqiIqi (2.1.6) 

Where F, and 6i are bus voltage and angle respectively. 

The machine currents I(u and Iqi can be eliminated by solving the generator interface 

equations to the network. Hence, 

4, =[Va +%, -0,)-%;,^cos(ô, -8,)X:' (2.1.7) 

4  = [ a „ 4 , c o s ( ô , - 6 , ) - % ^ s i n ( 6 ,  - 8 , ) W r '  ( 2 . 1 . 8 )  

(2.1.9) 

Note that (2.1.1) does not include the differential equation for Sm, and that all the 

angles here and henceforth are relative angles with respect to the mth generator's rotor angle. 

2.1.2 Excitation Control System 

The simplified IEEE type DC-1 excitation system [3] as shown in Fig.2.1 is used 

here. The corresponding mathematical model is 

E/di = Tgj [Vrj — [5"e,.{Ej-d i)\Efd i] i = \,...,m (2.1.10) 
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vn = T ^ [ - K i +Kai(Vrefi-Vi-Rfl)] i = (2.1.11) 

If 

- K i  £ K i ,max. ° (at steady state ) 

& 

z = l,...,m (2.1.12) 

where Vref, is the reference voltage of the automatic voltage regulator (AYR); Vri and 

Rfi are the outputs of the AYR and exciter soft feedback; Efia is the voltage applied to 

generator field winding; Tai, Tei and Tft are AYR, exciter and feedback time constants; Kai, Kei 

and Kfl are the gains of AYR, exciter and feedback; F„,mjn and Vri,max are the lower and upper 

limits of Vri. 

2.1.3 Prime Mover and Speed Governor 

Fig. 2.2 shows the block diagram for a simplified prime mover and speed governor. 

Two differential equations are involved to describe the dynamics when no g, limit is hit. 

= m (2.1.13) 

Vi = Tgi [Pgri - ®ref )/Ri - Vi ] if ^Vi ^ ^,max 

i = l,...,m (2.1.14) 

where Pgsi = P°si(l + Kgiju) is the designated real power generation;/^,. is its setting 

at base case; Kgi is the generator load pick-up factor that could be determined by AGC, EDC 

or other system operating practices; Pmi is the mechanical power of prime mover and p,. is 
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the steam valve or water gate opening; Rt is the governor regulation constant, representing its 

inherent speed-droop characteristic; core/(=1.0) is the governor reference speed; Tchi and Tgi 

are the time constants related to the prime mover and speed governor respectively; |^i min and 

Mi,max are the lower and upper limits of |_i, where a parameter |x is introduced to designate 

the system load level. At the base case, |_i equals zero. 

r,max 

ref 

AYR with limits 

Figure 2.1: The IEEE type DC-1 excitation system 

max 

ref 

Speed governor Prime-mover 

Figure 2.2 The simplified speed governor and prime mover 

2.1.4 Nonlinear Load Model 

The voltage and frequency dependent load is modeled as follows for all the load 

buses. 
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(2.1.15) 
&=&o(r,/u|,'i:i+*w(<». -»,)] 

Where Pu0 and Qu0 are the active and reactive powers consumed by the load at the 

nominal voltage V/ and frequency cor (=1.0). The frequency dependent term is included to 

prevent the equilibrium computation from divergence in case all the generators reach their 

maximum real power limits due to load increase or generator outages. Here Kipf and Kigf are 

the load changing factors with respect to system frequency. 

2.1.5 LTC Model 

Continuous on Load Tap Changer (LTC) model is taken. 

Assume there is an LTC between bus i and j, 

Where r is the ratio position of an LTC; t is the number of LTC; VJef is the reference 

voltage at the LTC regulated bus j; Tt is the time constant. 

2.1.6 Network Power Equations 

Corresponding to the above models, the network equations can be written as: 

(2.1.16) 

(2.1.17) 

(2.1.24) 

Where 



www.manaraa.com

11 

pti = HViVkY
lk cos(6z —Qk  -<p i k)  

h=[
n i = (2.1.25) 

&=f%^sm(0 , -0 , - ^ )  
*=l 

and 

= V; sin(S, - 0,) + cos(ô, - 0,) 
< i = (2.1.26) 

= 4,% cos(8, - 0,) - sin(6, - 0,) 

Pgi and Qgi are the generator output powers, which are primarily determined by the 

inherent characteristics of the speed governor and the AVR regulations. They will change if 

real power generation rescheduling and secondary voltage control is activated. Pti and Qti are 

the powers injected into the network at bus i. Klpi and Ktqi are the load changing factors 

specified for bus i. It should be noted that (2.1.24) is generic in the sense that it is used for all 

of the buses. 

2.2 The parameterization of DAE model 

The entire electric power system can be represented by differential and algebraic 

equations (DAE): 

[0 = G(A%y,e,j9); ^ " ^ 

In the equation (2.2.1), the differential equation describes the dynamics associated 

with the generators, the excitation systems, the prime movers, and the speed governors. The 

algebraic equation represents the network power balance equations. X is the vector of the 
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state variables for differential equations with length n, X - (5,co,Eq,Ed,Pm,/x,Efd,Vr,Rf). y 

is the vector of algebraic variables with length m, Y = (V,6). a is the parameter chosen for 

bifurcation analysis. In the power system, a represents the load level of the entire system. j3 

represents the control change parameter. 

In the load parameter space Z, = (PiL, QiL ) ( z = 1, where I denotes the number 

of load buses in the power system), the load at each bus will be changed with the parameter a, 

The constant KI PI  and KIQL define the scenario for load level change. 

In the control parameter space Ut = (Vrefi,Kai,---) ( / = 1, k, where k denotes the 

total number of possible controls in the system.), all the control parameters are changed with 

the parameter j3 change. 

^., =#/(! +/%%%,); (2.2.2) 

The constant Ktvref, KiKa, etc, define the scenario for control vector change. 

For some parameter not controllable in power system, also can be used to find 

impact of its value variation on oscillatory stability margin, or damping margin. For example, 

the oscillatory stability margin after transmission line tripping can be obtained if one let 

susceptances By and Admittance Yy of transmission line become 



www.manaraa.com

%.=%°(1-/?); 

13 

Where f3 e [0,1] (2.2.3) 

When the parameter 13 = 0, By - By and Ytj - Yy . When the parameter j8= 1, By - 0 

and Yy = 0. This represents the line between bus i and j is tripped. When one trace the 

margin boundary with /3 value gradually moving from zero to one, the margin value with (3 = 

1 is the post contingency oscillatory stability margin. 

In the margin identification, the parameter P is fixed as zero. For the margin 

boundary tracing, both parameters^ and /3) will be changed. It becomes a two parameters 

variation problem. 

When the parameter in (2.2.1) is varied, the corresponding state vectors X, Y and the 

eigenvalues of the system matrix are evaluated on this path change accordingly. 

Linearization of (2.2.1) at the equilibrium point with parameter <% and P leads to: 

0 G v Gv AY total AF 
(2.2.4) 

Matrices Fx, Fy, Gx, and Gy contain the first derivatives of F and G with respect to 

X and Y, evaluated at the equilibrium point. 

Note that the matrix Gy is an algebraic Jacobian matrix that contains the power flow 

Jacobian matrix. 

In the above equation, if det(Gy) does not equal zero, 

AX = A% (2.2.5) 
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Substituting in (2.2.4) results in 

(2.2.6) 

(2.2.7) 

The essential small-disturbance stability characteristics of a structure-preserving 

model are expressed in terms of eigenproperties of the reduced system matrix Asys. This 

matrix is called the dynamic system state matrix. 

Eigenvalue analysis of Asys will give small signal stability information of the current 

equilibrium point under small disturbances. At voltage collapse, the system loses the ability 

to supply enough power to a heavily-loaded network. At that point, the so-called saddle node 

bifurcation occurs, which is described by the movement of one eigenvalue of Asys on the real 

axis as it crosses the origin from the left half of the complex plane. Eigenvalue computation 

can detect this movement. When the Hopf bifurcation occurs, the Jacobian matrix Asys 0f the 

system has a simple pair of purely imaginary eigenvalues and there are no other eigenvalues 

on the imaginary axis. At the point of Hopf bifurcation, the power system can experience 

undamped oscillations. Similarly to saddle node bifurcation, Hopf bifurcation can also be 

identified by tracing the critical eigenvalue. 
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Chapter 3 Literature Review 

3.1 Introduction 

The loading margin is defined as the amount of additional load on a specified 

pattern of load increase that would cause power system instability. In Fig 3.1, the load level 

at AO, after subtracting the base-case load level, is called the voltage stability loading margin. 

Similarly, the load level at Al, after subtracting the base-case load level, is called the 

oscillatory stability loading margin. The load level at A2, after subtracting base-case load 

level, is called the damping ratio loading margin. 

A Voltage Damping ratio boundary for damping D0 

Oscillatory stability margin boundary 

A2 
Al 

Base Case 

Voltage stability margin boundary 

figure 3.1 : Illustration of three types of margin boundaries 

The respective margin boundaries (as shown by dashed lines in Fig. 3.1.) can also be 

obtained by any control parameter change starting with A2, Al and AO. In the literature 

various methods are proposed to identify these boundaries. These methods can be broadly 

classified as direct and indirect methods. The indirect methods can also be divided into 
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eigenvalue-based methods and the manifold-based method. The following sections will 

review these methods. 

3.1.1 The direct method to identify oscillatory stability loading margin 

The direct method can identify the oscillatory stability margin directly without 

computing any intermediate operating points. 

Define ^ as the eigenvalue of Asys, and v represents the eigenvector ofy^. Then, 

4y,v = Av (3.1.1) 

Define the extended eigenvector u  = ~G y  
XGxv ; the following equation can be 

obtained. 

'Fx F y ~  V Av 

Px G y _  u 0 
(3.1.2) 

Reference [16] [17] and [18] present the direct method, which rewrites u, v and A 

into the form 

v  =  v *  + j v f ;  

u = uR+ jUj\ Where 

A = r + js; 

UR ,UF G Rm 

r , s s R  

(3.1.3) 

At the Hopf bifurcation point, the real part of the dominant (i.e. right-most) 

eigenvalue is zero, i.e. r=0. 

Then the equation (3.1.2) becomes: 
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FxvR+FYuR+svI=Q 

>vl Fxv, + FyUJ-svR = 0 => 
0 GxvR + GyUR  = 0 

GxVj + GyUj = 0 

(3.1.4) 

With 

(3.1.5) 

Where v«(l) denotes the zth element of vector. 

Hopf bifurcation is obtained by solving equations (3.1.4) and (3.1.5) together with 

system equilibrium equation (3.1.6). 

There are 3(m+n)+2 independent equations in (3.1.4) (3.1.5) and (3.1.6). There are 

3(m+n)+2 unknown variables: {X, Y, VR, V/, UR, m, a, s}. 

References [17] and [18] first applied the direct method in the identification of the 

power system oscillatory stability margin. Solving of these equations is also complex and 

sometimes the traditional Newton-based optimization techniques can lead to difficulties or 

failure. This motivated the effort to find a reliable method to solve these algebraic equations. 

A genetic algorithm-based solution method was given in reference [19]. All the direct 

methods require a close initial guess. 

(3.1.6) 
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3.1.2 Eigenvalue based method to identify the oscillatory stability loading margin 

Reference [20] presents an eigenvalue-based iterative algorithm that calculates the 

Hopf bifurcation-related segment of the feasibility boundary for a realistically large power 

system model. This method needs initial operating points to start the calculation. At the base-

case with parameter value &(0), by solving the equation (3.1.6), the system state variables X 

and Y are available, represented by ^(0) and Y(0). After linearizing the DAE at this operating 

point, the corresponding Jacobian matrix Atotai is obtained. Then, all the eigenvalues of 

matrix Asys can be calculated. The eigenvalue with maximum real part is selected as the 

dominant eigenvalue, denoted as A(0). if the real part of the dominant eigenvalue is negative, 

the Hopf bifurcation point is not reached. 

Real part of dominant eigenvalue 

Hopf 

Figure 3.2 The secant method to estimate parameter value 

In Fig. 3.2, the vertical axis represents the real part of the dominant eigenvalue; the 

horizontal axis is the parameter value #. The smooth curve in Fig. 3.2 is the trajectory of the 
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real part of the dominant eigenvalue. This trajectory is unknown during the process of Hopf 

bifurcation identification. is the parameter value where Hopf bifurcation occurs. 

With parameter value «(0) and the corresponding dominant eigenvalue real part 

Re(^(0) ), point A can be located in Fig. 3.2. 

Similarly, with another parameter value a(1) and the corresponding dominant 

eigenvalue ^0>, point B can be located in Fig. 3.2. The estimation for a* (represented by <*(2) ) 

can be obtained by using the secant method. 

After calculating the eigenvalue at the new estimated operating point «(2), point C 

can be obtained. 

Each iteration consists of the parameter estimator and the eigenvalue calculation, 

also called the eigenvalue corrector. In reference [20], the secant method is used for the 

parameter estimator. The algorithm for parameter estimator decides the numbers of iterations. 

The conventional eigenvalue algorithm calculates all the eigenvalues. Unfortunately, 

this method is very slow. To speed up the process, references [21] and [22] discuss the 

robustness and efficiency of existing dominant eigenvalue-computing methods and provide 

new alternatives. Since only one eigenvalue is calculated each time, the algorithm is very fast. 

Reference [23] applies the power method with bilinear transformation to calculate 

the dominant eigenvalue. In reference [21] the power method is implemented and compared 

with other dominant eigenvalue-computing algorithms. The author finds that this method 

belongs to the linear convergence algorithm. Reference [21] also implemented Newton's 

method, inverse power and Rayleigh quotient iteration, etc. The various algorithms are 



www.manaraa.com

compared and evaluated with regards to convergence, performance and applicability. The 

conclusion of reference [21] points out that linear convergence algorithms, like the power 

method with bilinear transformation, are more robust than the higher-order methods. 

However, higher-order methods, such as the quadratic and cubic convergence methods, are 

much faster. A better result is achieved by combining these two types together. The average 

iteration number is reduced to approximately 12. 

Reference [24] describes new matrix transformations suited to the efficient 

calculation of the dominant eigenvalue of large-scale power system dynamic models. Since 

only the most critical eigenvalue is calculated, all the other eigenvalue information is not 

provided. The critical eigenvalue takes about 8-10 iterations by different transformations. 

Reference [25] describes the algorithm which efficiently computes the dominant 

poles of any specified high-order transfer function. It has the numerical properties of global 

and ultimately cubic convergence. A numerical example is provided to study low-frequency 

oscillations in electrical power systems. The transfer function's dominant eigenvalue takes 

about eleven iterations. 

In the large-scale power system simulation, using more than one processor will 

obviously speed up the calculation. References [23], [26], and [27] present the application of 

parallel computing in eigenvalue calculation. Parallel processing introduces increased 

complexity in software and algorithm strategy. Therefore, the task of converting a sequential 

algorithm into an efficient parallel procedure is always challenging. 

Reference [28] presents two sparsity-based eigenvalue techniques for oscillatory 

stability analysis of large-scale power systems. 
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3.1.3 The manifold-based method to identify oscillatory stability margin 

Reference [29] applies (Aotai + 4Lz) singularity detection to estimate the Hopf 

bifurcation. This is also called the manifold-based method. It is based on the following 

proposition: 

\, case 1 : K - 0 is the necessary condition for Hopf bifurcation associated with the power 

system DAE model Ays • 

Case 2: When Aotai is approximate to a normal matrix, /t, = 0 becomes the necessary 

condition. 

From this proposition, the method provides a conservative estimation for the Hopf 

bifurcation point. However, it can not provide the damping ratio and other relevant 

information related to oscillatory stability. 

3.2 Damping ratio margin 

Damping margin can be defined as the amount of additional load on a specified 

pattern of load increase that would cause the damping ratio reach its minimum limit. In the 

oscillatory stability assessment, the damping ratio margin needs to be checked for each 

contingency and scenario in order to keep the system far away from the minimum damping 

limit. 

F  + F T  

Proposition: Let the maximum eigenvalue of (Atotal + Ajolal) = x X
T 

1GX + FY 
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In the WSCC, reference [14] recommends the following criteria to determine the 

safe operating limits: 

The operating point is acceptable from the damping standpoint if: 

With path flow increased by the larger of 100 MW or 5 percent, any N-l 

contingency will not result in undamped oscillations or instability; 

With the path flow increased by the larger of 100 MW or 2 1/2 percent, any N-2 

contingency will not result in undamped oscillations or instability. 

, Damping Ratio 

Figure 3.3 Two cases with different damping ratio margins and the same oscillatory stability 

Fig. 3.3 shows two cases with same oscillatory stability margin ex*. If the given 

minimum damping ratio limit is Do, the damping margin will be and a% for case A and 

case B, respectively. Using this information, in case B the system can only be operated below 

ou,. In case A, the system is safe when the parameter is less than o&. 

Do 

0 
Parameter a 
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Different utilities may have different minimum damping ratio limits. The eigenvalue 

tracking technique can provide the entire relation curve between the parameter value and the 

dominant eigenvalue's damping ratio. 

Reference [30] mentions that the direct method could be used for computing the 

damping ratio margin. The numerical difficulties inherent in the direct method for the 

computation of the stability margin are still present in this case. 

In section 4.3, a new approach for calculation of the damping ratio margin is 

presented with the indirect method. Actually, the new approach is a by-product of eigenvalue 

tracing. If the eigenvalue tracing method is used in the calculation of oscillatory stability 

margin, the damping ratio margin can be obtained very quickly. 

3.3 Oscillatory stability and damping margin boundaries tracing 

In the security assessment, control actions are needed to maintain a given oscillatory 

stability and also damping ratio margins. How to find the optimal control parameter value or 

strategy becomes very important. With the margin boundary tracing, one can find the 

oscillatory stability and damping margins without tracing the entire P-V curve. Reference 

[31] presents a framework based on a differential manifold approach that combines 

identification and tracing of both saddle node and Hopf bifurcation margin boundaries. 

Compared with margin sensitivity, margin boundary tracing provides an actual estimate of 

the margin by considering all the nonlinear factors. It can provide more accurate information 

than the margin sensitivity. 
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Reference [31] doesn't need to trace entire P-V curve, but it still needs to trace P-V 

curve around the margin point. This will result in some extra power flow solutions. In the 

proposed method, tracing P-V curve will be totally avoided. Also reference [31] can not trace 

damping margin boundaries. 

Up to this point, we discussed various existing methods (and their different 

drawbacks) that deal with oscillatory stability margin identification and boundary tracing. 

Most of the existing literature is concentrated on the identification of oscillatory stability 

margin. Only reference [31] makes an attempt to trace the oscillatory stability boundary. 
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Chapter 4 Oscillatory stability margin and damping margin 
identification 

4.1 Oscillatory stability margin identification 

To identify the oscillatory stability margin, eigenvalue information of linearized 

DAE is needed. One of the major contributions of this thesis is to propose an eigenvalue 

tracking method to obtain eigenvalue related information including sensitivities. A derivative 

of the eigenvalues which is the by product of this approach can be used to identify the 

oscillatory stability margin information. 

The eigenvalue-tracking method involves a set of differential equations. The 

derivative in the differential equation denotes the differentiation of the eigenvalue and 

eigenvector with respect to the system parameter. By integrating in the parameter domain, 

the curve of the eigenvalue and eigenvector vs. the parameter value can be obtained. Thus, 

the complete information about how the traced eigenvalue approaches and crosses the 

imaginary axis is obtained. 

References [32], [33] provide an approach for developing the eigenvalue and 

eigenvector differential equation for the parameterized matrix J(a). For any eigenvalue A of 

J(a), and corresponding eigenvector v, the following relation is well known. 

J{a)v - Xv 

Zv  =  !  < 4 U > 

If you differentiate (4.1.1) with respect to oc, then 
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dJ T dv dA, . dv 
V + J = V + A 

da da da da 
dvT T dv . v + v = 0 
da da 

dA . dv dv dJ 
—v + A J— =—v 
da da da da 
dvT T dv . v + v — = 0 
da da 

dA „ dv T dv dJ 
— v + A J — — — v 
da da da da 

*\ = 0 
(4.1.2) 

da 

dv V—i dv, j dv 
FV V = / V, = v ) 

da da da 

By rearranging the terms in (4.1.2) we get the derivatives of v and A with respect 

to a as shown in equation (4.1.3) 
1 >
 1 V  ~ jv~ 

o
1
 > 1 A 0 

(4.1.3) 

where a dot denotes differentiation with respect to a. 

Here J depends explicitly on a. In power systems, J corresponds to the Jacobian 

matrix. However the Jacobian elements in power systems are not explicitly expressed in 

terms of a. 

In the differential and algebraic equations (DAE) model of a power system: 

|Z = F(JT,y,a) 
I 0 = G(%,y,a) 
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X and Y are state and algebraic variable vectors respectively, a is the parameter to 

represent load level of the entire system. The Jacobian Matrix of power system DAE model 

becomes 

Aotal ~ 
Fx{a) Fr(a) 

Gx{a) Gy{a) 

Thus dsys = Fx (a) - Fr (a)Gy l  (a)Gx (a) 

When a complex pair of eigenvalues of A s y s  crosses the imaginary axis, the system 

becomes oscillatory unstable. 

If A is an eigenvalue of A s y s  and v denotes the corresponding eigenvector. Then, 

Ay,? = ^ 

Then (4.1.1) will become 

\vTv = \ 

A and v are the eigenvalue and the right eigenvector that we want to trace. To 

preserve the sparsity, an extended eigenvector is defined as" = ~GY 
l(a)Gx(a)v. Then, 

ÏFxV + F YU = AV (4.1.4-1) 

[Gxv + Gru = 0 (4.1.4-2) 

By substituting u = -G r
1 G xv from (4.1.4-2) into (4.1.4-1), we 

g et (Fx -FyGyGx)v = Av . if we let J(cc)-Fx(a)-FY(a)Gv
l(a)Gx(a) 5 and substitute 

J(cc) into (4.1.3), we obtain 
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vr 0 

d  ( F x  -  F Y G Y l G x )  
da 

0 
(4.1.5) 

The part of (4.1.5) can be derived as: 

d(^-F/%) 
da 

_p. dj-F&G,) 

•Fxv-F&GxV-FV  
i ( G 'G x )-

da 
(4.1.6) 

_ r1 • - d(GY 
]GX) _i . 

From w - ~GR GXV} we can get « — v - GY GXV. So, 
da 

(4.1.7) 

Substitute (4.1.7) into (4.1.6), 

da 
-v = Fxv - FYG-Y

XGxV + F¥(U + GY'1GxV) (4.1.8) 

Substitute (4.1.8) into (4.1.5), 

{XI  -F x + F Y GyG x  )v + vi = F xv - F Y G Y G xv + F Y (Ù + G Y ~ l G xv) 

v v = 0 

(4.1.9-1) 

(4.1.9-2) 

In order to apply a sparse matrix technique, we can't let GY show up in explicit 

form. So, we have to let u also enter the state variable. Substituting u - ~GY 
lGxv into 

(4.1.9-1) 
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(/II — Fx )v — JFyÙ + VÀ — FXV + FyU 

— Gxv — Gyii = Gxv + GyU 
(4.1.10) 

With (4.1.10) and (4.1.9-2), we can derive the following differential equation, 

similar to (4.1.3) 

1 1 <
 l

 

V Fxv + FyU 

1 1 o
 

Ù - GXV + GyU 

vT 0 0 i 0 
(4.1.11) 

Since ( A ( a ) , v ( a ) , u ( a ) )  is in CxCxC"", (4.1.11) is a complex differential 

equation. 

Define 

V = Z V R + P n  

u = u R +  j u , \  where 

Â = ÂR + jXj ; 

v R , v f G R n  

u R ,U j  eR m  

âr,Aj 6 R 

With the above notation, equation (4.1.11) can be further extended to the following 

real differential equation form. 

K!~ F x  — I j l  'Fy  0 ~ V I  VR F X V R  +F Y U R  

Ajl  0 -F y V7 VR V/ FX V I  FyUj  

-G x  0 -G r  0 0 0 Ù R  Gx V R GyU R  

0 0 -Gy 0 0 Ù J  G x Vj  + GyU j  
T 

VR 
T 

~VI 0 0 0 0 4 0 
T 

V I  
T 

VR 0 0 0 0 1 0 

(4.1.12) 
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The above formulation leads to an algorithm for tracing any eigenvalue of a 

parameterized matrix. This formulation also retains the sparsity. 

FY(ij) is the element at i th  row, /h column in matrix . The FY can be computed 

element by element with (4.1.13). Similarly, Fx , Gx and Gr can be obtained. 

F ^Y(ij) dX dFr(ij) dY dFr(tJ) 

ar ay 6a 
(4.1.13) 

The above nonlinear differential equation leads to an algorithm for tracing any 

eigenvalue and corresponding eigenvector of a parameterized matrix, which retains sparsity. 

The state variables of this nonlinear differential equation are [ Vr , V/, Ur , M/, ]. In the 

eigenvalue-tracing method, at each operating point the eigenvalue information is obtained 

through numerical integration. The dimension of the linear equation to be solved is 

2(n+m+l). 

i < Real part of dominant eigenvalue 

c/n )  c/n + l )  a' c/n + 2 )  or 

Slope is^& 
da 

Figure 4.1 The tangent information is used for 
predicting the next step length 
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In order to reduce the number of steps to a minimum, derivative^5- can be used to 
da 

calculate the step length for the integration. 

o(«+0 
In the Newton method, the «("+2) is predicted by «("+2) = «("+1) — . (See Fig. 

4.1) 

The integration step length can be obtained with «("+2) -«("+1). By the eigenvalue 

tracking method, the dominant eigenvalue at «("+1) can be obtained. 

With the same initial operating point «(n) and «(n+1), the secant method [20] will 

predict the parameter value «' (in Fig. 4.1) as well as the next step length. In Fig. 4.1, the 

Newton method estimated parameter value «<fl+2) is closer to <%* than»'. Thus, the Newton 

method can reduce the number of iteration in the oscillatory stability margin identification. 

Eigenvalue Real Part 

o 

Fig. 4.2 Eigenvalue real part vs. parameter a 

From the above formulation (4.1.12), one can trace all the eigenvalues or any 

specified subset or a single eigenvalue of interest. To detect the Hopf bifurcation, we are 
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interested in the complex eigenvalue which crosses the imaginary axis first. To identify this 

eigenvalue an index is derived. 

Fig 4.2 shows a conceptual variation of real parts of three eigenvalues with respect 

to parameter OL With the equation (4.1.12), any eigenvalue real part derivative can be 

obtained. The dashed lines in Fig.4.2 indicate the slopes at base case parameter value of <%. 

This information is used to define an index to estimate which eigenvalue will cross the 

imaginary axis first. This index is given by equation (4.1.13) 

If we assume all the eigenvalues at the base case are on the left half of the complex 

plane, then a positive index means the corresponding eigenvalue moves towards the 

imaginary axis and negative means it moves away from the imaginary axis. The positive 

index value indicates, if a value increases by this index value, it will reach the imaginary axis 

with the current speed. The negative index value means, if a value decreases by this index 

value, it will reach the imaginary axis with the current speed. Thus, a low positive index 

value relative to others indicates the corresponding eigenvalue is critical and may be the first 

one to cross the imaginary axis. 

In Fig.4.2, the eigenvalues corresponding to points A and C have positive index 

value, where as point B has a negative index value. Between A and C, C has a less positive 

index value. In this particular scenario, the Hopf bifurcation is more likely to be identified by 

tracing the real part of eigenvalue C. 

Index (4.1.13) 
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The fourth order integration eigenvalue tracing method to search Hopf bifurcation 

includes the following steps: 

1) Compute the equilibrium point for the DAE model. Linearize the system and 

calculate Ays matrix and its eigenvalue by conventional method. Compute the index for all 

complex eigenvalues by (4.1.14). Then, rank them by index value. The number one ranked 

eigenvalue is the one we will trace. Then let the iteration number n = \ and step length at its 

maximum limit. Then, enter following loop. 

2) Solve linear equation (4.1.12) to compute 

Kl=[vfi
(")r, v/")r, ùR

("yi, ùj{n)T, iR<n), Xj(n) ]T 
5 where n denotes the iteration number. 

3) Let [v, R 9VI 5 / 
(tenp\)T (templ)T {temp\)T (temp\)T 

> -i y I tUn ,tir 

h 
Kl  —,  where  h is the step length for parameter « . 

then compute the equilibrium 

Y 
for 

a 

Solve the linear equation (4.1.12) to compute 

K2=[%, 



www.manaraa.com

34 

Use as eigen-information for 

(4.1.12). 

r (temp2)T (temp2)T (temp2)T (temp2)T i (temp2) n (tempi)-iT 
5) Let 3 i  - > u r  - > u i  • > a r  5a/ J — 

[ V r" ) T , V j ( n ) T , u ^ n ) T ,uj(n)T, X ^ n ) , X i ( n ) f  +  K2~,  and  so lve  l i nea r  equa t ion  (4 .1 .12 )  aga in  t o  

compute 

. ("+z)r . ("+z)r . ("+z)r . ( n+
~ )

T „• (»+T) -• ("+-) r 
K3 — [vs »v/ »M/ »^/Î »^7 ] 

Use [v/^^\v/^^\w/^^%w/^^\^^'\^^faseigen-infomiation. 

r (tempi)T (temp3)T (temp3)T (temp3)T i (tempi) i (tem/>3)-|7" 
6) Let lvs >v/ >M/ J = 

[v,(">r,v/-'r,u,wr,1 1 /" ) r ,2 , ( ' ) ,Â, (">] r  + K3 -A. 

Let a1"*11 =a(n)+h t and compute the equilibrium for load level «"" " to get 

^-(n+1) 
y(n+l) 

g("+n^ 

Solve linear equation (4.1.12) again to compute 

K4= f 

is used as eigen-mfoimation. 

7) Integrate the eigenvalue and eigenvector as 
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- \v (n)T v(n)T u (n)T u (")r  X (") X (">1r-I- (K^ + 2xK2 + 2xK3 + K4) 
—  l v r  > v i  > u r  > u i  > / i i  s  +  ^  n  

6 

8) If the integrated eigenvalue real part is still negative and the step length is its 

maximum limit, then go to step 2). Otherwise, go to step 9). 

9) If 4r° <10 5, terminate the loop and output. 

Otherwise, compute K1 similar in step 2). Then, let the step length 

i (n+l) 1 («+1) 
/z("+1> = - / = ""jfe • " = " + !, go to step 3) 

/ tifo 

In some complex situations, the eigenvalue index may not always be able to identify 

which eigenvalue to trace. In Section 4.5, a methodology is proposed to handle this situation. 

4.2 Simulation result for oscillatory stability margin identification 

The algorithm is tested on a New England 39-bus, 10-generator system with two-

axis generator model, IEEE DC-I excitation system and governor model, which can be found 

in reference [3] [13]. There are 9 state variables for each generator. The total system Jacobian 

dimension is 167x167 (89 state variables and 78 algebraic variables). Load consists of 50% 

constant power, 30% constant current, and 20% constant impedance. Load on all buses will 

increase with the same percentage. The sum of the initial load on all buses is 6141.3MW. 

The New England system detailed data can be found in Appendix 1. 

The total number of eigenvalues at any given operating equilibrium is 89. Out of 

which 41 are real and 24 are complex pairs. 
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Figure 4.3 Eigenvalues in complex plane at base case 

Fig4.3 shows eigenvalues with a real part greater than -0.3 in the upper-half of the 

complex plane for the base case (total load: 6141.3MW). With (4.1.12), each eigenvalue's 

Xjt and X/ can be calculated. The arrows show the moving direction of each eigenvalue when 

parameter Œ increases. The length of the arrow shows the speed of movement with respect to 

a. 

Table 4.1 Index of all complex eigenvalues in Fig 4.3 

Rank No Symbol Index Value Eigenvalue 

1 C 0.49052 -0.12929 ±j3.84574 
2 D 0.68478 -0.28288 ±j6.80807 
4 E 1.83944 -0.26939 ±j5.97408 
6 F 2.26469 -0.20663 ±j7.51990 

10 G 9.19457 -0.18181 ±j6.28264 
A -22.5297 -0.05609 ±j0.10762 
B -0.89964 -0.10300 ±j6.87668 

Table 4.1 shows the index value for all the complex eigenvalues in Fig 4.3. The 

complex eigenvalues A and B have negative index values. We included these two in the table 
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to show the importance of the index. These two eigenvalues are very close to the imaginary 

axis compared to any other ranked eigenvalues. However they are moving away from the 

imaginary axis for increasing load. By using the index we eliminated these two for further 

tracing. 

The ranked number one eigenvalue was traced through equation (3.1.2) by fourth 

order Runge-Kutta method. To prevent error caused by too large an integration step length, 

0.08 is used as the step length maximum limit for parameter a. It represents the entire system 

load increase of 8%. Table 4.2 shows each iteration result during the integration. At each 

intermediate operating point, a MATLAB provided function is used to obtain the actual 

eigenvalue for comparison. 

Table 4.2: Hopf bifurcation search for each iteration 

Iter No. a value load level (MW) Integrated^ 

0 0 0 -0.12929 
1 0.08 491.3 -0.10017 
2 0.16 982.61 -0.03869 
3 0.19405 1191.72 7.96E-03 
4 0.18916 1161.69 1.95E-04 
5 0.18903 1160.89 1.27E-07 

In Table4.2, the integrated eigenvalue real part and its actual value are shown. The 

corresponding error is listed. In the first two steps, the parameter a is increased by 0.08, 

which corresponds to 6141.3MW><8% = 491.3MW. From Table 4.2, we can see that the 

accumulated error is well under control. Fig 4.4 shows the eigenvalue's position for every 

step in the complex plane. 
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Fig. 4.4 Integrated eigenvalue in complex plane 
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Fig. 4.5 Integrated eigenvalue with total load increase 

Fig4.5 shows the eigenvalue's real part with the parameter ct The eigenvalue 

position in Steps 4 and 5 are very close. 
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With the MATLAB provided eigenvalue calculation method, the exact Hopf 

bifurcation appears at a load increase of 18.90605%. This is equal to 6141.3MW* 

18.90605% = 1161.078MW load increase. This compares well with our value of 

18.90341%x6141.3MW=1160.915MW. The error is 0.163MW. 

For each load increase step, we have to solve 2(m+n)+2 dimension linear equation 

four times. 

4.3 Damping margin identification 

A Damping Ratio 

Do 

0 

Damping Margin 

Figure 4.6 The tangent information is used for 
searching damping margin 

The damping ratio is defined as D - - cos[arctan(™-)] 
Ar 

(4.3.1) 

Since XR and ^7 are available, the damping ratio's derivative to parameter a can be 

derived and is given by (4.3.2) 
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dD 
da 

sin(arctan(— 
(4.3.2) 

The damping index can be obtained by 

D-D, 

Following a similar approach to Hopf identification, the damping ratio of any 

eigenvalue can be traced with a given damping threshold Do. Fig 4.6 shows the process of 

searching a damping margin. 

The slope of the damping ratio curve in Fig 4.6 can be used to predict a parameter 

value in damping margin identification. 

4.4 Simulation result for damping margin identification 

Similar to oscillatory stability margin identification, the damping margin 

identification is also obtained. Table 4.3 shows the simulation results for a damping ratio 

limit (Do) of 1%. Here the same ranked number one eigenvalue damping ratio is traced. 

Table 4.3: Damping ratio search for each iteration 

Iter No. «value Total Load Increase(MW) Integrated Damping 

0 
1 
2 
3 
4 

0 
0.08 
0.16 

0.16358 
0.16350 

0 
491.30 
982.61 

1004.57 
1004.09 

0.0336 
0.0272 
0.0111 

9.97 E-03 
9.99999E-03 

Figure 4.7 shows the each iteration's load increase and damping ratio. 
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If we compare the oscillatory stability margin with the damping margin 

1004.086MW, there is a 156.992MW (1161.078MW -1004.086MW) difference. When we 

use DQ-0%, the corresponding damping margin becomes the oscillatory stability margin. 

3-5 Base Case 

iteration #1 

O) 
Iteration #2 Q. 

Iteration #3&4 

0.5 
400 600 800 

Load Increase for Entire System (MW) 
0 200 1000 1200 

Fig. 4.7 Damping ratio vs. entire system load increase 

4.5 Discussion of the practical aspects of the proposed algorithm 

4.5.1 Consideration for cases if the eigenvalue index doesn't work 

In the previous section we calculated all the eigenvalues and their indices to trace 

any specific eigenvalue of interest. In general we do not need to calculate all the eigenvalues. 

In the previous example the number 1 ranked eigenvalue at the base case is finally crossing 

the imaginary axis first. However this may not always be true for all operating conditions. 

Flow chart in Fig. 4.8 describes the steps involved for any general starting point. 

First we calculate a subset of eigenvalues with a maximum real part for the base 

case. As discussed in the introduction, powerful methods are proposed in the literature [21], 
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[22], [24], [25], [28], [34] to calculate these dominant eigenvalues. Next, the indices for this 

subset of eigenvalues are calculated. The eigenvalue with minimum positive index in this 

subset will be traced. During every step of load increase, the eigenvalue moving direction is 

d X R  
checked. If becomes negative, it indicates that the eigenvalue is moving towards the 

left hand side in the complex plane. We need to stop tracing this eigenvalue. At this load, 

calculate another subset of eigenvalues with the maximum real part. Pick an eigenvalue with 

minimum positive index and trace this new eigenvalue. 

When the traced eigenvalue reaches the imaginary axis, it satisfies the minimum 

tolerance criteria. At this operating point we have to check if some other eigenvalues crossed 

the imaginary axis already. For this we have to find an eigenvalue with maximum real part. If 

this eigenvalue is the same as the one we traced before, we find the Hopf and stop. 

Otherwise, trace the new eigenvalue with the maximum real part backward, until it comes 

back to the imaginary axis. Our simulation experiments indicated, in a stressed system, the 

eigenvalue with a minimum positive index will cross the imaginary axis in the first attempt. 

So, we don't have to waste time calculating an eigenvalue with a maximum real part multiple 

times. Even if the operating point is far away from the Hopf point, this method took less 

number of maximum real part calculation updates as described below. 

We simulated an operating point which is far away from the Hopf point. In the 

previous example the total load of the base case is reduced by 50%. At this reduced load, an 

eigenvalue with the maximum real part is calculated. This eigenvalue turns out to be the 

same eigenvalue A as in Fig.4.3. However the index for this eigenvalue is negative. 
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AR j < € (tolerance)? 

No dA 
<0? 

da 
Yes 
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No 

No 
j < e(tolerance)? 
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I < ((tolerance)? 

Start 

Output 

Decrease the load and trace this eigenvalue 

Increase the load and trace the 
eigenvalue A with least index 

Calculate an eigenvalue A' with maximum real part 

Calculate subset of eigenvalues with maximum real 
part, find index for each eigenvalue in this subset. 

Select the eigenvalue with least index 

Fig 4.8 Flow chart for oscillatory stability margin estimation 
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The next eigenvalue with maximum real part is B. At this reduced load, B has a 

positive index. We traced this B for the Hopf identification. Before it reaches the imaginary 

axis the index became negative for an increase of 80% load from the new base case. At this 

load (5527.17MW) an eigenvalue with a maximum real part is calculated again. This time it 

picked up the eigenvalue C (which is the one that is actually crossing the imaginary axis 

first). In the previous case this eigenvalue was also selected for final tracing at the base load 

level of 6141.3MW. This implies the procedure proposed in Fig.4.8 guarantees the final 

identification of Hopf. 

8 

7 

6 

2 

1 

0 
-0.2 -0.15 -0.1 -0.05 0 0.05 
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Figure 4.9 Eigenvalue A, B & C trajectories in complex plane for 

The trajectories of eigenvalues A, B and C (the notation is same as in Fig. 4.1) for 

the new base case are shown in Fig 4.9. Part of Fig 4.9 is enlarged in Fig. 4.10, to show the 

details of the eigenvalue B's locus. The star represents the eigenvalue position at the new 

base value. Circles indicate the integration steps. The load increase step limit is the same as 
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the one used in Table 4.2. The triangle represents the eigenvalue's position at the fifth load 

increase step. 

7.05 

co 6.95 

CD 
6.9 

6.85 

-0.14 -0.13 -0.12 -0.11 -0.1 -0.09 
Real Part 

Figure 4.10 Eigenvalue B trajectory in complex plane 

Since eigenvalue A and B both have negative index value (at the 5th step), 

eigenvalue C becomes the one we need to trace, according to the flow chart. From Fig 4.9 

and our simulation result in Table 4.2, eigenvalue C will move toward the right and cross the 

imaginary axis. 

To make sure the eigenvalue C crosses the imaginary axis first, we applied the 

maximum real part test at this load level where C crosses. We found out there is no other 

eigenvalue with real part greater than C. According to Figure 4.8, if there is another 
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eigenvalue which already crossed the imaginary axis before C, we have to apply backward 

tracing on this eigenvalue. 

Yes 
eftolerance)? 

No 

No 

Yes 

Yes 
Check for eigenvalues A * if | D*-Dy | < 

~-_______6(tolerance)?_______.——— " 

~~~~X~~~No 

Start 

Output 

Trace eigenvalue A * backward 

Find the eigenvalue A * with minimum damping ratio 

Increase the load and trace the eigenvalue A with 
least damping index by one step 

Calculate subset of eigenvalues with minimum damping 
ratios. Find the eigenvalue with least damping index. 

dD 
da 

>0? 

Fig 4.11 Flow chart for damping margin estimation 

For the damping margin identification, we developed a very similar flow chart in 

Fig 4.11. But we need to compute the subset of eigenvalues with a minimum damping ratio at 

the beginning for the index comparison; compute a single eigenvalue with minimum 
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damping at last to verify the traced eigenvalue is the correct one. If the traced eigenvalue 

turns back, we need to start this process from this load level again. 

4.5.2 Consideration of Discrete Events 

When the load level and transfer level increase in transmission systems, some 

discrete events could happen, like capacitor switching, transformer tap changing, hitting 

reactive power generation limits, etc. With some slight modifications the eigenvalue tracing 

can still function without any problems. 

t \ Voltage 

Cj Ci(f^~CSwitching 

Vthreshold 

E 

a 

Figure 4.12 P-V curves due to capacitor switching 

In the Figure 4.12, we demonstrate the capacitor switching action during the tracing. 

Here the horizontal axis is the a value; vertical axis represents voltage. When the load or 

power transfer increases with a, voltage will drop. When the voltage drops to the threshold 
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value Vthreshold, capacitor Cswitching will be switched in at operating point B. Voltage will be 

raised to point C. 

In the eigenvalue tracing process, the switching action is represented by equation 

(4.5.3). Before switching 7 is zero. 

|0 = G(%,y,e,y); ( ' ' ) 

= + (4.5.2) 
%,=(l + ̂ )fg; 

Q = C,o + 7 ̂ Ci^switching (4.5.3) 

When we trace the operating point from A to E in the above Figure 4.12, the 7 stays 

at zero. Real and reactive load and generation keep increasing according to formula (4.5.2). 

When we reach point B and find low voltage and the need for a capacitor to be 

switched in, we trace the eigenvalue from B to C. In this new tracing process, we let a stop 

increasing, and treat it as a constant value. 7 will be treated as a parameter to trace the 

eigenvalue, i.e., in formula (4.5.1), a. becomes a constant number. During the new tracing, 

all equations well be modified correspondingly (Now the all the derivatives are with respect 

to 7, not to a.) 

After Ci reachs Qo+Cswitching , i.e., point C is obtained, 7 will become a constant 

value again. C, will be constant at Cw+Cswitchmg- During tracing from C to D, a becomes 

parameter again. 
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Figure 4.13 shows the eigenvalue's trajectory during this tracing process. 

Ci CjO+CSwitching ' ^ Int 

C 
A ^ 

E 

Re 

Figure 4.13 Traced eigenvalue trajectories with capacitor switching action 

Similar reasoning can be applied for the other devices hitting the limit during the 

tracing. No eigenvalue computing is needed during integration from operating point A to D, 

and no accuracy is sacrificed. 

4.6 Computational comparison 

The following sections provide detailed computational comparisons with the secant 

method 

4.6.1 Step length selection and accuracy 

We simulated our case with second and fourth order integration methods with 

different step length maximum limits. We also tested the secant method with different initial 

step lengths. The correct oscillatory stability margin for the test case is 18.90605% load 

increase (<% =0.1890605), which is 1161.077MW. (6141.3MW is the total load in the base 

case.) Tables 4.4, 4.5 and 4.6 show the simulation result. Fig.4.14 summarizes these results. 
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The error in percentage is the percentage to oscillatory stability margin, (which is 

1161.077MW). 

In the secant method, to predict the step length, it needs two power flow solutions at 

different load levels and the corresponding eigenvalue. One power flow is chosen at the base 

case, the distance between the second operating point load level and the base case is called 

"Initial step length". This step length has to be designated by users. After that, every step 

length will be predicted by the secant method. In Table 4.6, different initial step lengths were 

simulated. One can notice that the secant method can converge faster with an initial step 

length of 0.18 or 0.20 (This is due to the final answer which is 0.189 and the step length 

chosen is close to this value). The best case is when the initial step length is the final answer, 

where only one step is needed. If the user is not so lucky to jump close to the final answer in 

the first step, it takes an average of seven or eight steps to find the oscillatory stability 

margin. 

From Table 1, when the step length limit is larger than 0.10, the error from the 

second order integration method becomes unacceptable. But the fourth order integration 

method result from Table 4.5 shows the error is pretty small even with a step length of 0.2. 

Load increase of 20% of the base case total load is more than enough in a practical system. In 

a stressed system, a step length more than 10% will require intermediate operating points to 

make the power flow converged, i.e. more than one power flow solution is needed for any 

method. If only considering a step length below or equal to 0.10, both the second and fourth 

order integration methods would find the final answer in a fewer number of steps. The 
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second order method could require less power flow solutions than the secant method with 

acceptable error. 

It may appear that the secant method can take advantage of choosing a longer step 

length. To show how much benefit can be obtained for the secant method, we tested an initial 

step length of 0.40 load increase. As the result indicates, we didn't see any efficiency 

enhancement for the secant method from the large initial step length. The nonlinear 

characteristics of the system make the large step lengths perform poorly in the predictor. 

For cases with a light base case load level, where an initial large step length can 

save time, we can use a hybrid method to start the search with the exact same way in the 

secant method. Once we find it's close to the final answer, then, we switch to our integration 

method, since the tangent predictor is always faster to converge in local search than the 

secant method. 

We noticed that the fourth order integration method needs two power flow solutions 

for each step, one more than in the secant method, but, the fourth order integration method 

can find margin point with fewer steps to compensate for this disadvantage. If we don't 

consider the initial operating point calculation, for a 0.10 step length, the fourth order 

integration method needs four steps to find the final answer ( so, it needs eight power flow 

solutions). With the 0.10 initial step length, the secant method needs eight steps, which 

requires eight power flow solutions also. The numbers of power flow solutions are the same 

in both methods. With 0.10 step length, the second order method needs only 4 steps, which 

require only 4 power flow solutions. 
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Table 4.4 Second order integration method simulation result 
Step Length Steps Error Error 
Limit ( A a ) Needed (MW) (%) 

0.04 7 1.307 0.11 

0.05 6 2.446 0.21 

0.06 7 7.065 0.61 

0.07 6 7.374 0.64 

0.08 6 15.84 1.36 

0.09 7 20.69 1.78 

0.1 4 19.51 1.68 

0.11 5 32.35 2.79 

0.12 5 53.15 4.58 

0.13 6 85.42 7.36 

0.14 6 130.7 11.25 

Table 4.5 Fourth order integration method simulation result 
Step Length Steps Error Error 
Limit ( A a ) Needed (MW) (%) 

0.04 7 0.176 0.015 

0.06 5 0.155 0.013 

0.08 5 0.162 0.014 

0.10 4 0.025 0.002 

0.12 4 0.079 0.007 

0.14 4 0.342 0.029 

0.16 4 0.764 0.066 

0.18 3 1.445 0.124 

0.1890605 1 0 0 

0.20 3 2.722 0.234 

0.22 4 4.949 0.426 

Table 4.6 Secant method simulation result 

Initial Step Length 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.1890605 0.2 

Steps Needed 9 9 8 8 7 7 7 6 1 6 

Initial Step Length 0.22 0.24 0.26 0.3 0.3 0.32 0.34 0.36 0.38 0.4 

Steps Needed 7 7 7 7 8 8 8 8 9 9 
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c ^ \ ^ [ ] If one happens to jump to final answer in first | 
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Figure 4.14. Steps needed for integration methods vs different initial step length 
for secant method 

4.6.2 Estimation of computational cost 

For a full matrix with dimension N, LU factorization needs N3 times multiplication-

additions. The forward and backward substitution costs N2 times multiplication-additions. In 

this situation, the fourth order integration method needs four LU factorizations; a single 

eigenvalue with a maximum real part needs only one LU factorization. 

However in large scale power system, a Jacobian matrix is always sparse. The non

zero element for every column is influenced more by network topology and dynamic model 

than by system size. Thus, with an increase in system dimension, the number of non-zero 

elements will increase approximately by N, not with 2. 

According to William Tinney's paper [35], if the numbers of non-zero elements for 

each row doesn't increase with matrix dimension, the CPU cost will increase with N, not N2 

(or N3) for both LU factorization and forward-backward substitution. 
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In our New England test case, according to Tinney's paper, for our system 

dimension of 2(m+n+l) = 336 linear equations, LU factorization needs 3787 times of 

multiplication-additions, forward and backward substitution needs 2087 times of 

multiplication-additions. For signal eigenvalue computation, forward and backward 

substitution needs 1838 times of multiplication-additions. 

Table 4.7: Computing cost comparison between different methods 
Note: For second order method, each step needs to solve two linear equations and one power flow. 

Number 
of Steps 

Power flow 
solutions needed 

Time for the computation of eigenvalue 
(unit is number of multiplication-additions ) 

Secant method 7 7x1=7 7x20x1838 = 257,320 

2nd integration 4 4x1=4 4x2x(3787+2087) = 46,992 

4th integration 4 4x2=8 4x4x(3787+2087) = 93,984 

From the above table 4.7, we can see how fast the second order method can be on 

both major parts of the calculation. 

To estimate the computing cost for power flow, we assumed a Newton-Raphson 

method can converge within four iterations. Each iteration in a Newton-Raphson method 

consists of three major parts of computation: Mismatch calculation, calculation of a Jacobian 

matrix and solving of the linear equation. 

Computing cost for solving linear equations: For the example above we need to 

solve 2(m+n+l) linear equations (336 equations for the New England test systems) . The 

total cost is 3787+2087 = 5874 ~ 17.5x336 = 17.5x2(m+n+l). For DAE model with 

dimension (m+n), we assume that solving linear equation would cost I7.5(m+n) times of 

multiplication -additions 
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The other two parts of computing (calculating mismatch and Jacobian matrix) cost 

depends on the dynamic model used for DAE. If we assume these two parts cost as much as 

solving a linear equation, one power flow with four iterations will cost 

4 x [17.5(M + ri) + \1.5{m + ri)] = 140(TM + n) = 23,380 times of multiplication - additions. 

We can get the following total computing cost estimation. 

Table 4.8: Total computing cost com; parison between different methods 

Number 
of Steps 

Power flow 
Solutions Needed 

Time for Eigenvalue 
Information 

Total Computing 
Cost Number 

of Steps 
*unit is number of multiplication - additions 

Secant method 7 
7x23,380 
=163,660 

7x20x1838=257,320 420,980 

2nd order 
integration 

4 
4x23,380 = 

93,520 
4x2x(3787+2087) = 

46,992 
140,512 

4th order 
integration 

4 
4x2x23,380=187, 

040 
4x4x(3787+2087)= 

93,984 
281,024 

In Table 4.8, the second order method is 420,980/140,512 =3.0 times faster than the 

secant method. The fourth order method is 420,980/281,024 =1.5 times faster. This speed 

comparison depends on the number of iterations needed to get a power flow solution. 

4.6.3 Robustness of the algorithms 

In the above discussion we assumed on an average it takes 20 iterations to calculate 

a single eigenvalue. However it may take more than 20 iterations for large systems. To verify 

the robustness of the eigenvalue calculation for a large systems we randomly generated test 

systems. We calculated a single eigenvalue with a maximum real part of these test systems 

by MATLAB provided function "eigs.m". We found on an average, the number of iterations 

for these test matrixes will increase with increasing the test matrix dimension. The large 
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matrixes need much more than 20 times of iteration. The probability of this algorithm 

converging also increases with increasing the test matrix dimension. 

Randomly generated test systems: 

To make our randomly generated matrix more realistic, these matrixes have to be 

sparse. The non-zero elements on each row won't increase when the system size is 

increasing. Thus, the diagonal matrix is selected. Since, our matrix has to be a real matrix. 

We choose a two by two block on diagonal to represent a pair of conjugate complex 

eigenvalues. 

If we have a complex eigenvalue « ± jP , where P^O, then we can find a two by two 

real matrix 
a p 

- P a 
whose complex eigenvalues are a ± jp. 

If we have two pairs of complex eigenvalues ± M and «2 ± jfi2  and three single 

real eigenvalues «3, <%, and as, we can construct the following sparse real matrix with all of 

these eigenvalues. 

ax  A 0 0 0 0 0 

-A 0 0 0 0 0 

0 0 a2  A 0 0 0 

0 0 -A a2  0 0 0 

0 0 0 0 *3 0 0 

0 0 0 0 0 «4 0 

0 0 0 0 0 0 «5 
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In the test case, 41 real eigenvalues out of a total of 89 (46%) are real. The rest of 

the 54% eigenvalues are complex. All the real eigenvalues' mean is -11.2608, the standard 

deviation is 21.5945. All the complex eigenvalues' imaginary part mean is 4.2770, the 

standard deviation is 3.7219. The complex eigenvalues' real part mean is -2.0660, and the 

standard deviation is 3.7385 

With this method, we randomly produced real eigenvalues and complex eigenvalues 

with the same statistical characteristics as above, and built matrices with different 

dimensions. 

ÎU 

400 800 1600 6400 12800 3200 
Matrix dimension 

Figure 4.15. Percentage of unsolved cases with different size matrices 

MATLAB single eigenvalue function "eigs.m" is applied to calculate a single 

eigenvalue with the maximum real part. The MATLAB default maximum iteration threshold 

is 300.We chose six different matrix dimensions: 400, 800, 1600, 3200, 6400 and 12800. For 

every dimension, 100 matrixes are randomly produced with the above statistical data. For a 

12800 dimension matrix, 21 out of 100 cases can not converge within an iteration limit 
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(which is 300 iterations in our test). It appears, for large systems, conventional methods may 

face convergence problems. 

In our New England test system Jacobian matrix computation, only three out of one 

hundred cases failed to converge within the iteration limit. 

Figure 4.15 shows the percentage of unsolved cases for matrix dimensions from 400 

to 12800. For all converged cases, we calculated the average number of iterations for 

matrices with different sizes. Results are shown in Figure 4.16. 

100 

CD 

I 
O 

I 
s <1> 
<D 

I 

3200 400 800 1600 6400 12800 
Matrix Dimension 

Figure 4.16. Average number of iterations needed to converge with different 
size matrices 

The data for these two figures is given in Table 4.9. 
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Table 4.9: Numbers of iteration for different size matrixes 

Matrix 
size 

Unsolved cases per 100 
tests 

Average number of iterations for 
converged cases 

400 13 65.20 

800 16 69.87 

1600 10 76.70 

3200 17 80.33 

6400 13 82.44 

12800 21 95.29 

These results indicate the potential disadvantage of the conventional secant method. 

In the New England 39-bus test case, we assumed 20 iterations to get a single eigenvalue. If 

the comparison is based on the iteration numbers in Table 4.9, the proposed method in this 

thesis would be much faster than the comparison result in the section 4.6.2. 
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Chapter 5 Oscillatory stability and damping ratio margin boundary 
tracing 

5.1 Oscillatory stability margin boundary tracing 

In the last chapter, an efficient eigenvalue-tracing algorithm is described for a fixed 

set of control parameters. When these control parameters change, the stability margin related 

to the Hopf bifurcation changes as well. The oscillatory stability margin boundary is confined 

by the Hopf bifurcation with a different set of control parameters. This boundary could be 

traced by augmenting the power system equilibrium with a characterization equation that 

defines the Hopf boundary. This characterization equation, together with the system 

equilibrium, defines the margin boundary. 

In grid security assessment, control actions are needed to maintain a given 

oscillatory stability and damping margins, i.e., one can maximize the stability margin or 

damping margin by adjusting control parameters. The algorithm presented in this chapter can 

estimate the change in the oscillatory stability margin for any given large change in system 

parameters. Through nonlinear margin boundary tracing, one can easily estimate the margin 

for any given variation in the control parameter value. Discrete events, like a transmission 

line tripping, also can be parameterized as a continuous event, such that, one can apply this 

margin boundary tracing method in contingency analysis. This can reduce the computational 

time required for a large scale system contingency analysis. 
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Compared with margin sensitivity, margin boundary tracing provides an actual 

value of the margin by considering all the nonlinear factors. It can provide more accurate 

information than the margin sensitivity. 

The oscillatory stability margin boundary can be traced by augmenting the power 

system equilibrium with a characterization equation. This characterization equation, together 

with the system equilibrium, defines the margin boundary. 

In chapter 3 the set of equations (3.1.4) (3.1.5) and (3.1.6) define the Hopf 

boundary. Here (5.1.1) (equilibrium conditions) corresponds to (3.1.6) where an additional 

control parameter j8 is explicitly represented. In chapter 4, j8 is fixed and a is varied. Here 

both a and /3 are varied. 

The conditions related to (3.1.4) and (3.1.5) are combined to define characterization 

equations (5.1.2) which together with (5.1.1) defines oscillatory stability boundary. 

As described in chapter 2 (section 2.2) the load and the control parameter variation 

are represented as: 

(5.1.1) 

C{X,Y,vR ,uR ,v,,u,,a,p,s) = 

F X vR  +FyU R  + S V , =  0 

(*XVR + GyUR = 0 

FxVj + Fyiij -svR= 0 

GxVj + GyUj = 0 
(5.1.2) 
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Load: (5.1.3) 
8% =2/(i+aK%%); 

Control: U j  = U i 0  + fiKC t  (5.1.4) 

Where U i 0  indicates the initial configuration of control i . In the control parameter 

space Ui = (Vrefi,Kaj,-- •) ( i = 1, k, where k denotes the total number of possible controls 

in the system.), all the control parameters are changed with the parameter j3 change. 

Different combinations of control actions can be achieved by assigning different ratio 

values to KQ. This parameterization leads to two parameter variations: a characterizing 

system loading conditions with respect to a specified loading scenario, and /3 characterizing 

control parameters with respect to a specified control scenario 

and 3(n+m)+3 variables. With the pre-defined control scenario (5.1.4) the oscillatory 

stability margin can be identified with any given j8 value. 

This entire margin boundary tracing process begins with the base-case Hopf 

bifurcation point, which is detected by the Hopf bifurcation identification method described 

in Chapter 4. 

Fig. 5.1 illustrated this process. The point CO is the initial operating point. With the 

method introduced in Chapter 4, one can identify oscillatory stability margin point AO, i.e., 

the first pair of conjugate complex eigenvalues is identified to cross the imaginary axis. 

During this process, the parameter /3 keeps its value at (30 .  

0 = F(%,y,a,j9) 

0 = G(J%y,a,j9) 
and C(X,Y,vR ,uR ,v I ,u I ,a,j3,s) = 0 has 3(n+m)+2 equations 
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Voltage 

Damping margin boundary with D0= 1% 

Oscillatory stability margin boundary 

Corrector 

Predictor 

'ge stability margin boundary 

a 

Figure 5.1 Illustration of the voltage stability, oscillatory stability and damping margin 

boundaries and their tracing process 

Now, the margin boundary tracing process can start. All the information at operating 

point AO should satisfy conditions (5.1.1) and (5.1.2). 

5.1.1 Augmentation for boundary tracing 

Combining (5.1.1) with (5.1.2) results in the following set of equations that define 

the Hopf boundary [36]. 

B{X,Y,vR ,uR ,v I ,u I ,a,/3,s) = 

%y,a,/7) 

G(jr,y,e,jg) 

C ( j r , y , v a , w * , v , , w , a )  

= 0 (5.1.5) 
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In (5.1.5), there are 3(m+n)+3 unknown variables and 3(m+n)+2 equations. To get a 

specific boundary point, one has to assign a value to one of the variables by the following 

equation: 

[XT ,YT ,vR ,ul,vJ,Uj ,a,J3,s]ek  —ij = 0 where k denotes the index of the specified 

variable and V is its value. 

The total augmented equations for margin boundary tracing are 

'•'0 = H(X,Y,vR,uR,vI,uI,a,/3,s)= Y-
B(X,Y,vR,uR,vI,u,,a,j3,s) 

YT ,v/ ,u/ ,v,T ,u/ 

0 — H (X, Y ,V r,U s,V J ,U J  , a ,/3,s) — 
G(%,y,a,^) 

c(XJ,vR,uR,v,,u,,a,p,s) 
(5.1.6) 

Where ek is the vector with all zero elements, except the kth element equal to one. 

8H{X,Y,vR,uR,v1,u,,a,P,s) 
8{X ,Y ,vR,uR,v, ,u, ,a, P ,s) 

aF 8F 8F 8F 8F 8F 8F 8F 8F 
8X 8Y 8v r duR 8v, 8u, da dp ds 
5G 8G 8G 8G 8G 8G 8G 8G 8G 
8X 8Y 8v r  8u r  8v j  8u, da 8p 8s 
8C 8C 8C 8C 8C 8C 8C 8C 8C 
8X 8Y 8v r  8u r  8v ,  8u , 8a d p  8s 

e. 

(5.1.7) 

When: = r T T T T T 

pre 9 ^ R pre ' ^ R pre ' ^ I pre 5 ^ / pre 
a B s k and is obtained from the 
** pre » H pre pre rk 

tangent vector calculated in the boundary predictor. 
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5.1.2Boundary predictor 

In order to get the oscillatory stability margin with j3 value (3/, which is the point A1 

in Fig. 5.1, one can apply the predictor and corrector strategy. The margin boundary tangent 

which is shown in the Fig. 5.1 is denoted as[dXT ,dYT ,dvR ,duR ,dv,T ,du,T ,a,p,s]T ,  and 

can be obtained by solving 

dH{X,Y , v R ,u R , V j , U j ,a,p,s) 
d{X,Y , v R ,u R , V j ,u,,a,p,s) 

dY 

dv, 

du, 

da 

ds 

0 

0 

0 
+ 1 

(5.1.8) 

After solving (5.1.8) for a tangent vector, the predicted values of the unknown 

variables can be obtained from (5.1.9). Where 8 is the step length. 

pre 

pre 

< pre 

R pre 

I pre 

I pre 

a pre 

pre 

pre 

m 

Y 

VR 

U R  duR 

V/ + S dvj 

Uj duj 

a da 

P 49 

s ds 

(5.1.9) 
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This predicted value is represented as point Al' in Fig 5.1, and it can be used to as 

an initial guess to converge upon the stability boundary by solving the non-linear algebraic 

equations (5.1.6) with the Newton-Raphson method. 

5.1.3Boundary corrector 

The Newton-Raphson method can be employed to do the boundary correction as 

~ x ~  new 
~ x ~  

Y Y 

V R  VR 

U R  U R  

V, = VI 
U ,  U J  

a a 

P  P  
s s 

d(X,Y,vR ,uR ,v I ,u l ,a,J3,s) 
(5.1.10) 

Iterate until the mismatch is less than the tolerance. Finally one can obtain the 

solution which is the Hopf bifurcation point corresponding to 

[xT ,YT ,v/ ,u/ ,v/ ,u/ ,a,j3,s)fk  = 7 7 .  

In the corrector, there are two ways to converge to the boundary curve. Fig. 5.2 

shows these two strategies. 

If one wants to trace the margin boundary curve with several specific /3 value points, 

n _ a 
the step length <5 in (5.1.9) needs to be chosen carefully by ô = ——, where dpi is the 

dpi 

solution of (5.1.8). /?, is the value for current available margin point on boundary. is the 

specific value for the next margin boundary point which is unknown. With this step length, 
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the predicted j3 value will be exactly . By solving the non-linear algebraic equation 

(5.1.6), one can get the margin point with /? = . In this case, the index k in ek should be 

3(n+m)+2. 

A Voltage 

Oscillatory stability margin boundary Corrector 

Al' 

Predictor 

AO 

Figure 5.2 Illustration of the corrector convergence strategies 

Thus, the margin point for a given j8 value can be traced. This corrector is shown in 

Fig 5.2 (from the point Al ' to the point Al). 

There is another way to trace the margin boundary curve without controlling the 

intermediate point's j8 value. After calculating the tangent vector 

[dXT ,dYT ,dvR
r  ,du/ ,dv,T ,du/,a,j3,s]T , check the element with maximum magnitude. 

For example, let dVi be the maximum magnitude element (F, is an element of Y, which is the 

z'th bus voltage magnitude). In the corrector, (5.1.6) will be modified to 
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0 = F(%,y,a,j9); 

0 = G(Z,y,a,j8); 

C(X,Y,vR ,uR ,v ] ,u,,a,/3,s) = 0; (5.1.11) 

jy _ y predicted _ q. 

When solving this algebraic equation with the Newton-Raphson method, the index k 

in (5.1.6) becomes the index of dV t  in vector [dXT ,dYT ,dvR
r ,duR

T ,dv,T ,du,T ,a,p,s]T .  

This process is illustrated in Fig. 5.2 (From point Al' to point Al*). 

The only drawback of this corrector is that the /3 value is not totally controllable. 

The advantage of this approach is it is numerically stable. The Newton-Raphson method will 

converge faster compared to the previous selection of /3. For the sample system tested in this 

thesis both methods are equally good. In the event that one encounters divergence problems 

with the first approach, the second approach for the corrector iteration can be applied to 

overcome this obstacle. 

The following steps are involved in oscillatory stability margin boundary tracing: 

1) with the initial state, which is the solution of (5.1.1) and (5.1.2), where /3 = /3o, 

solve the (5.1.8) to get the tangent of margin boundary. 

2) with (5.1.9), predict the margin boundary solution. 

3) solve (5.1.10) for the Newton-Raphson algorithm. 

4) If |8 reaches the target value or any other stopping criteria, stop the tracing 

process. Otherwise, return to step 2). 
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The result of tracing is a set of Hopf bifurcation points for various values of (3. Each 

|8 value can be related to the amount of corresponding control variable. The distance between 

two bifurcation points depends on the step length ô in margin boundary tracing. 

The sensitivity information is available as a by-product, like^L, ^L, — , — , — , 
dp dp dp dp dp 

ds 
~dp' 

5.2 Damping ratio margin boundary tracing 

The same procedure can be employed to trace the damping ratio margin boundary. 

Here, for a given damping ratio £0, the real part of the dominant eigenvalue should be 

r = .s--cot(cos~'(4)), where s is the imaginary part of dominant eigenvalue. So the cut function 

of the damping margin boundary becomes 

F xU r +  F yV r + su j + s • cot(cos_1 (I,, ))uR = 0 

FxUj +FrVj — suR +s-cot(cos~1(£0))w/ =0 

C(X,Y,a,p,s,vR ,v I ,uR ,u,) = • 
GX

U
R  + GyVR  — 0 

GXU, + GyVj = 0 

U R ( i )  =  0  

u I ( j )  -1 = 0 

(5.2.1) 

Similar procedures described for oscillatory stability margin boundary can be 

applied to obtain a damping ratio margin boundary. The only difference is "C" which is 

replaced with (5.2.1). 
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In Fig. 5.1, the boundary tracing starts from point BO, this is obtained by the 

damping ratio margin identification method from Chapter 4. With the predictor and the 

corrector, the boundary curve can be obtained. 

5.3 Simulation results 

5.3.1 Oscillatory stability margin boundary tracing 

The algorithm was tested on a New England 39-bus system described in Chapter 4. 

Load consists of 50% constant power, 30% constant current and 20% constant impedance. 

Load on all buses will increase by the same percentage. Four cases are studied with different 

control scenarios. For all these cases, the starting conditions correspond to the margin point 

identified in chapter 4, where the oscillatory instability occurs at a load increase of 1161MW. 

Case 1 : 

In this case, parameters Ka in the excitation system of all generators are decreased 

to 50% of their initial values. 

The vertical axis in Fig 5.3 shows the oscillatory stability margin value. The 

horizontal axis shows the Ka value at all generators as a percentage of their original values. 

When the values of Ka are decreased by around 22%, the entire system oscillatory stability 

margin reaches its maximum value of 1230MW. The original Ka values have the margin of 

1160MW. The margin is increased by 70MW. From the margin boundary tracing, the control 

parameter perturbation tolerance also can be obtained. For example, if all generators' Ka 

values are set to be 80% of original value, the margin can be guaranteed larger than 1200MW 

with 10 percent perturbation. 
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Figure5.3 Oscillatory stability margin boundary with decrease of Ka at all generators 

Case 2: 

4 6 8 10 12 14 16 18 20 
Ka of Generator at Bus #30 

Figure 5.4 Oscillatory stability margins with Ka of generator at Bus #30 
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Only the Ka of the generator at Bus #30 is reduced. Fig5.4 shows the margin 

change. Entire system load margin reaches its maximum value of 1232MW when the Ka 

value of the generator at bus#30 decreases from 20 to 4. The load margin is improved by 

approximately 70MW. 

Case 3: 

Three generators are chosen for adjusting the Ka value. The control scenario is: 

^=^>(1-0.95#; 

7&z„=#z^(l + 8.0j9); 

^=^'(1-0.5/?); 

Fig5.5 shows the variation of the margin. When the P value is 0.8, the oscillatory 

stability margin becomes 1357MW. The margin is improved by 197MW. 

1360 
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1 1320 
c 
S> 1300 
i 

1280 I 
>, 1260 

•§ 1240 
35 
£ 1220 
ro 
= 1200 
« 

1180 

1160+-
0.2 0.3 0.4 0.5 0.6 

Control Parameter Beta 
0.7 0.8 0.9 

Figure5.5 Oscillatory stability margin boundary with Ka of three selected 
generators varying 
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Case 4: 

1180 -
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1140 

E 1120 

Ê 1100 
ra 
oo 1080 

o 1060 
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ô 1040 

1020 

1000 
0.1 0.2 0.3 0 0.4 0.5 0.8 0.9 1 0.6 0.7 

j3 (j8=0 line is in and /3=1 line is out) 

Figure 5.6 Oscillatory stability margin boundary with outage of line 3-18 

This case corresponds to line outage. Here j3 =0 corresponds to the line is in and j8 

=1 indicates the line is out. 

Fig 5.6 shows the system load margin for post-contingency. The margin after line 3-

18 out is 1013MW. In Fig5.6, the boundary can be traced in only two steps, which is denoted 

by squares. The total cost involved: solving of (5.1.1) and (5.1.2) twice by the Newton-

Raphson method. There is no eigenvalue computing involved. Without the margin boundary 

tracing, a P-V curve has to be traced without this transmission line, in order to obtain the 

oscillatory stability margin for post-contingency. 
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5.3.2 Damping ratio margin boundary tracing 

1250 

1200 

(5 1150 Fï.0% 

m 1100 

5 1050 

% 1000 

900 

850 
100 

Ka at All Generators Reduced (%) 

Figure 5.7 Oscillatory stability margin and damping margin with decrease of Ka 
at f all the generators 

In Fig 5.7, the four curves are the oscillatory stability margin boundary (D = 0), and 

the damping margin boundaries for D=0.5%, 1.0%, and 1.5%, from the top to the bottom of 

the figure. 

Fig. 5.8 shows a three dimensional view of Fig.5.7. The D threshold values are 

changed in increments from zero to 1.5% with 0.1% increment intervals. The vertical axis 

denotes the entire system damping margin. The same color represents similar margin values. 

All the points under the surface are safe. 
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FigureS. 8 damping margin surface with change of Ka at all generators 

If we want to achieve the maximum oscillatory margin (or damping margin with 

D=0), according to this Ka change scenario, all generators Ka should be decreased to around 

78% of their original value. If one wants to obtain the maximum damping margin boundary 

with D=1.5%, the Ka should be reduced to around 70% of their original value. 

From Fig. 5.8, one can see that even with the same control parameter scenario, 

different stability assessment criteria could result in a different optimal control parameter 

value, i.e., the optimal /? value for maximizing oscillatory stability margin may not be the 

optimal for the damping margin. 
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Further in Fig. 5.8, with all Ka's set at 100% of their initial values and with D=1.5% 

the difference between the damping margin and oscillatory stability margin is around 

260MW. However in other extreme where Ka's are at 50% of their initial value and with the 

same D-l.5%, the difference between the damping margin and the oscillatory stability 

margin is only 25MW. In this case even though there is adequate damping you may 

experience oscillatory instability problems. 

Similarly Fig. 5.9 and Fig 5.10 show the three dimensional view for cases 2 and 3 

respectively of section 5.3. 

. r 

E 1050 

2 950 

900 
0 

eshold 
40 50 60 zu 80 90 

Figure 5.9 damping margin surface with Ka of generator at bus #30 
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In the Fig. 5.10, all the points on the curve B- A have the same damping margin of 

1160MW. The curve basically provides the relationship between the damping ratio and P to 

maintain the same damping margin. This information is valuable to decide optimal control 

actions to maintain a specific damping or oscillatory stability margin for changing system 

conditions. 

f 1250 

c 1200 

5 1150 

o. 1050 

?o .0.5 

0.4 0-6 
Control Parameter Beta 

FigureS. 10 damping margin surface when Ka of three selected generators 
varying 

Similar to oscillatory stability margin boundary tracing, the damping margin tracing 

technique can also compute the post-contingency boundary without tracing the whole post-

contingency P-V curve. Fig 5.11 shows the simulation result for the damping margin with an 

outage of line 3-18. The damping threshold values from the top to the bottom are 0%, 0.5%, 

1.0%, and 1.5%. 
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Figure 5.11 damping margin with outage of line 3-18 

5.4Computational aspects 

The above boundary tracing can also be obtained by repeatedly applying the 

eigenvalues tracing method described in chapter 4. The process is illustrated in Fig 5.12. 

At base case, where P = Po , an eigenvalue tracing method can be applied to identify 

the Hopf bifurcation point or damping margin point. The a<> in Fig 5.12 represents the 

oscillatory stability margin with parameter/? = Po. This is the starting point of the margin 

boundary. 

To identify the next margin point on the boundary, one can fix a value as#o,  and let 

P = P\.  After solving a power flow, one can get point Bi. At point Bi, one has to calculate 

the eigenvalue with a maximum real part to check whether or not the margin point is reached. 
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If not, the eigenvalue tracing method has to be applied to trace the P-V curve for the margin 

poin t  wi th  P ~ A. 

Oscillatory Stability Margin 

Boundary 

Control Parameter Change 

Eigenvalue Tracing Method 

«•••• Boundary Predictor 

•— Boundary Corrector 

«0 

Figure 5.12 Oscillatory stability margin boundary tracing vs. eigenvalue tracing 

In the tracing process from point to Ai, multiple steps are needed. Each step 

needs to solve power flow and eigenvalue information. 

For the proposed margin boundary tracing method, getting Ai from Ao will be faster 

than the above process. The boundary tangent can be obtained by solving linear equation 
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(5.1.8). (5.1.9) can give an estimation of the boundary point with/? - A. From (5.1.10) one 

can get point Ai. 

The major computation involved in boundary tracing is to solve the linear equations 

with matrix 
. dH(X,Y,vR,uR,v I,u I,a,/3,s) 

d(X,Y,vR ,uR ,Vj,Uj,a,^,s) 

predictor (5.4.1) and corrector (5.4.2) have the same matrix. 

. The structure of this matrix is shown below. The 

1 

r* 
Fy 1 0 0 0 0 Fa FP 0 0" 

i Gy ! o 0 0 0 Ga GP 
0 0 

0 0 

r 

&
\ i 

Fy 

g
 

0 0 0 V, 0 

0 0 : ^ Gy ! o 0 0 0 0 duR 0 

0 0 0 

h i 

Fy 0 0 -VR dVj 
= 0 

0 0 0 0 : ^ Gy 0 0 0 duj 0 

0 0 0 0 0 0 0 0 da 0 

0 ' 0 0 0 0 0 0 0 0 

ds 1 (5.4.1) 

Fy : o 0 0 0 Fa 0 " AY 

! c *  Gy : o 0 0 0 Ga GP 0 AT 

0 0 ! ^ Fy iQIO 
0 0 0 Vt A^R 

F 
0 0 ! Gx Gy ! o 0 0 0 0 MR 

Q 

0 0 0 I ^ Fy 0 0 -VR AVJ 
= 

C 
0 0 0 0 ; Gx Gy 0 0 0 AM, 

0 
0 0 4 0 0 0 0 0 0 AA 

0 

0 0 0 0 4 0 0 0 0 W 

EK As (5.4.2) 

Let's consider the first 3(m+n) dimension block of the matrix in (5.4.1) or (5.4.2). 

There are three diagonal blocks (in dashed squares) and two non-diagonal non-zero block (in 

dashed circles). One can see these three blocks on the diagonal line are exactly the same. The 

two non-zero off-diagonal blocks are s • I and -s-I respectively. 
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If the LU factorization of 
Fx FY 

Gx Gr 

is known, there won't be too much 

computational cost to find the LU factorization of matrix for (5.4.1) or (5.4.2). i.e. solving 

this 3(m+n+l) dimension linear equation (5.4.1) or (5.4.2) doesn't cost too much 

computational time. 

How to handle a special case which may not appear in practical situations is 

presented in Appendix 3. 
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Chapter 6 Conclusions 

This dissertation proposes novel algorithms for power system oscillatory stability 

assessment. An integration based eigenvalue tracing method is proposed to trace any 

specified eigenvalue of interest. Also a margin boundary tracing algorithm that can trace not 

only the oscillatory stability margin boundary, but also damping margin boundary is 

proposed. The eigenvalues tracing method can trace any eigenvalues of interest. An 

eigenvalue index is proposed to rank the eigenvalues. This index is helpful for identifying the 

rate of change of movement and the direction of movement for these eigenvalues with 

respect to change in any parameter of interest. This approach is used to identify Hopf 

bifurcation. It is also extended to satisfy minimum damping margin constraints. 

The salient points and contributions of this approach are: 

• For the first time, the eigenvalue tracing algorithm is introduced into power 

system oscillatory stability assessment. 

• In the oscillatory stability margin identification, existing methods are either 

difficult to converge (like the direct method), or comparably slower (like the 

secant method). In some base cases, where the eigenvalue with the 

maximum real part moves toward the left-hand side on complex plane, the 

secant method will predict a negative step length which will prevent this 

method from finding margin point. The proposed eigenvalue tracing method 

in this dissertation can overcome these disadvantages by introducing the 

eigenvalue index. This index can find an eigenvalue which is more likely to 
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cross the imaginary axis than the eigenvalue with the maximum real part. 

Similarly, the eigenvalue damping index can help to trace the right 

eigenvalue in damping margin identification 

• The proposed method avoids repeated calculation of the dominant 

eigenvalue for changing operating conditions. It also takes into account the 

rate of change as well as the direction of the movement of the eigenvalue in 

step length prediction. Thus the entire process to identify oscillatory stability 

margin is accelerated. 

• The method can be used to get both oscillatory stability and damping ratio 

information. 

• Eigenvalue and Eigenvector sensitivities are by-products of this approach 

• This method is faster and more robust than the secant method, especially for 

large scale systems. 

• Can trace close eigenvalues without any numerical problems 

The dissertation discusses the computational advantages of this algorithm in detail, 

and demonstrates the potential convergence problems with the secant method. The 

eigenvector derivatives can be used to obtain participation factor derivatives. The 

participation factors are generally indicative of the relative participations of the respective 

states in the corresponding modes (or eigenvalues), so the derivatives of these factors can 

further show how this association will change for any parameter variation of interest. 
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Without the proposed margin boundary (both oscillatory and damping) tracing 

algorithm one has to repeat tracing the P-V curve with a different parameter j3 value to get 

the oscillatory stability margin boundary and the damping margin boundary. To get one 

margin point on the boundary, one has to search multiple operating points in tracing one P-V 

curve. Each operating point requires solving a power flow with Newton- Raphson or other 

algorithms. The proposed method can speed-up this process with help from the boundary 

predictor and corrector. 

The salient points and contribution of this approach are: 

• Tangent vector can be used to predict local sensitivity information 

• Can estimate the margin for any large change in system parameters faster 

than the existing methods. 

• The approach provides the relevant information about the nonlinear 

characteristics between margin and control parameters, by which one can 

find not only the control parameter values to maximize the margin, but also 

the control parameter perturbation tolerance, which can help keep the system 

more robust 

• For the first time, an algorithm to trace the damping margin boundary is 

proposed 

The eigenvalues tracing and margin boundary tracing methodologies proposed in 

this thesis will make contribution to future on-line stability assessment tools for large scale 

power systems. 
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Appendix 1 : Data of test case- New England system 

1. New England 39 Bus System One Line Diagram 

Figure A-l : New England 39 bus system diagram 

37 

— Y 20 

B \ / \/  

2. The IEEE Format Base Case Power Flow Data of the New England System 

BUS DATA 
1BUS1 
2BUS2 
3BUS3 
4BUS4 
5 BUSS 
6BUS6 
7 BUS? 
8BUS8 
9BUS9 
10BUS10 
11 BUS11 
12BUS12 
13BUS13 
14BUS14 
15BUS15 
16BUS16 
17BUS17 
18BUS18 
19BUS19 
20 BUS20 
21 BUS21 
22 BUS22 
23 BUS23 
24 BUS24 
25 BUS25 

FOLLOWS 
1 01.0410-
1 01.0310-

01.0050-
0 0.9858 -
0 0.9920 -
0 0.9952 -
0 0.9847 -
0 0.9839 -
0 1.0232 -

1 0 1.0056 
1 0 1.0009 
1 0 0.9872 

0 1.0009 
0 0.9940 
0 0.9896 
0 1.0028 
0 1.0065 

1 01.0045 
0 1.0395 
0 0.9853 

1 01.0112 
1 01.0381 
1 0 1.0316 
1 0 1.0015 
1 01.0458 

13.41 
11.22 
13.88 
14.02 
12.25 
11.41 
13.76 
14.33 
14.60 
-9.42 
-10.10 
-10.24 
-10.23 
-12.19 
-13.34 
-12.16 
-13.12 
-13.86 
-7.87 
-9.48 
-9.83 
-5.44 
-5.65 
-12.07 
-10.02 

39 ITEMS 
0.00 0.00 
0.00 

322.00 
500.00 
0.00 
0.00 

233.80 
522.00 
0.00 
0.00 
0.00 
8.50 
0.00 
0.00 

320.00 
329.40 
0.00 

158.00 
0.00 

680.00 
274.00 
0.00 

247.50 
308.60 
224.00 

0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 1 
0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 2 
122.40 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 3 
184.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 4 
0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 5 
0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 6 
84.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 7 
176.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 8 
0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 9 

0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 10 
0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 
0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 

0.00 
0.00 
88.00 
0.00 
0.00 
153.00 
132.30 

0 11 
0 12 
0 13 
0 14 

0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 17 
30.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 18 

0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 19 
103.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 20 
115.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 21 
0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 22 
84.60 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 23 
92.20 
47.20 

0.00 
0.00 

0.00 
0.00 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

24 
25 
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26 BUS26 
27 BUS27 
28 BUS28 
29 BUS29 
30 BUS30 
31 BUS31 
32 BUS32 
33 BUS33 
34 BUS34 
35 BUS35 
36 BUS36 
37 BUS37 
38 BUS38 
39 BUS39 

-999 
BRANCH DATA FOLLOWS 

1 01.0294-11.40 
1 0 1.0128-13.40 

01.0305 -8.01 
0 1.0316 -5.23 
2 1.0200 -8.97 
3 0.9820 0.00 
2 0.9831 -1.58 
2 0.9972 -2.80 
2 1.0023 -4.49 
2 1.0493 -0.58 

1 2 1.0435 2.01 
2 1.0478 -3.43 
2 1.0265 1.73 

139.00 47.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 
281.00 75.50 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 
206.00 27.60 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 
283.50 126.90 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 
0.00 0.00 230.00 228.51 0.00 1.0475 380.00-100.00 0.0000 0.0000 0 
0.00 0.00 723.00 280.66 0.00 0.9820 600.00 -300.00 0.0000 0.0000 0 
0.00 0.00 630.00 275.85 0.00 0.9831 500.00-300.00 0.0000 0.0000 0 
0.00 0.00 612.00 197.36 0.00 0.9972 500.00 -300.00 0.0000 0.0000 0 
0.00 0.00 488.00 217.74 0.00 1.0123 450.00-250.00 0.0000 0.0000 0 
0.00 0.00 630.00 314.70 0.00 1.0493 600.00-250.00 0.0000 0.0000 0 
0.00 0.00 540.00 170.64 0.001.0635 500.00-220.00 0.0000 0.0000 0 
0.00 0.00 520.00 69.56 0.00 1.0278 500.00-220.00 0.0000 0.0000 0 
0.00 0.00 810.00 159.60 0.00 1.0265 500.00-300.00 0.0000 0.0000 0 

1 2 1.0300-14.69 1104.00 250.00 1000.00 124.37 0.00 1.0300 900.00 -800.00 0.0000 0.0000 

48 ITEMS 
1 2 1 1 1 0 0.003500 0.041100 0.69870 0. 0. 0. 0 0 0.0000 
1 39 1 1 1 0 0.002000 0.050000 0.37500 0. 0. 0. 0 0 0.0000 
1 39 1 1 2 0 0.002000 0.050000 0.37500 0. 0. 0. 0 0 0.0000 
2 3 1 1 1 0 0.001300 0.015100 0.25720 0. 0. 0. 0 0 0.0000 
2 25 1 1 1 0 0.007000 0.008600 0.14600 0. 0. 0. 00 0.0000 
3 4 1 1 1 0 0.001300 0.021300 0.22140 0. 0. 0. 0 0 0.0000 
3 18 1 1 1 0 0.001100 0.013300 0.21380 0. 0. 0. 00 0.0000 
4 5 1 1 1 0 0.000800 0.012800 0.13420 0. 0. 0. 0 0 0.0000 
4 14 1 1 1 0 0.000800 0.012900 0.13820 0. 0. 0. 0 0 0.0000 
5 6 1 1 1 0 0.000200 0.002600 0.04340 0. 0. 0. 0 0 0.0000 
5 8 1 1 1 0 0.000800 0.011200 0.14760 0. 0. 0. 00 0.0000 
6 7 1 1 1 0 0.000600 0.009200 0.11300 0. 0. 0. 0 0 0.0000 
6 11 1 1 1 0 0.000700 0.008200 0.13890 0. 0. 0. 0 0 0.0000 
7 8 1 1 1 0 0.000400 0.004600 0.07860 0. 0. 0. 0 0 0.0000 
8 9 1 1 1 0 0.002300 0.036300 0.38040 0. 0. 0. 0 0 0.0000 
9 39 1 1 1 0 0.001000 0.025000 1.20000 0. 0. 0. 0 0 0.0000 
10 11 1 1 1 0 0.000400 0.004300 0.07290 0. 0. 0. 0 0 0.0000 
10 13 1 1 1 0 0.000400 0.004300 0.07290 0. 0. 0. 0 0 0.0000 
13 14 1 1 1 0 0.000900 0.010100 0.17230 0. 0. 0. 0 0 0.0000 
14 15 1 1 1 0 0.001800 0.021700 0.36600 0. 0. 0. 0 0 0.0000 
15 16 1 1 1 0 0.000900 0.009400 0.17100 0. 0. 0. 0 0 0.0000 
16 17 1 1 1 0 0.000700 0.008900 0.13420 0. 0. 0. 0 0 0.0000 
16 19 1 1 1 0 0.001600 0.019500 0.30400 0. 0. 0. 0 0 0.0000 
16 21 1 1 1 0 0.000800 0.013500 0.25480 0. 0. 0. 0 0 0.0000 
16 24 1 1 1 0 0.000300 0.005900 0.06800 0. 0. 0. 0 0 0.0000 
17 18 1 1 1 0 0.000700 0.008200 0.13190 0. 0. 0. 0 0 0.0000 
17 27 1 1 1 0 0.001300 0.017300 0.32160 0. 0. 0. 0 0 0.0000 
21 22 1 1 1 0 0.000800 0.014000 0.25650 0. 0. 0. 0 0 0.0000 
22 23 1 1 1 0 0.000600 0.009600 0.18460 0. 0. 0. 0 0 0.0000 
23 24 1 1 1 0 0.002200 0.035000 0.36100 0. 0. 0. 0 0 0.0000 
25 26 1 1 1 0 0.003200 0.032300 0.51300 0. 0. 0. 00 0.0000 
26 27 1 1 1 0 0.001400 0.014700 0.23960 0. 0. 0. 0 0 0.0000 
26 28 1 1 1 0 0.004300 0.047400 0.78020 0. 0. 0. 0 0 0.0000 
26 29 1 1 1 0 0.005700 0.062500 1.02900 0. 0. 0. 0 0 0.0000 
28 29 1 1 1 0 0.001400 0.015100 0.24900 0. 0. 0. 0 0 0.0000 
2 30 1 1 1 1 0.000000 0.018100 0.00000 0. 0. 0. 0 0 1.0250 
6 31 1 1 1 1 0.000000 0.050000 0.00000 0. 0. 0. 0 0 1.0700 
6 31 1 1 2 1 0.000000 0.050000 0.00000 0. 0. 0. 0 0 1.0700 
10 32 1 1 1 1 0.000000 0.020000 0.00000 0. 0. 0. 0 0 1.0700 
12 11 1 1 1 1 0.001600 0.043500 0.00000 0. 0. 0. 0 0 1.0060 
12 13 1 1 1 1 0.001600 0.043500 0.00000 0. 0. 0. 0 0 1.0060 
19 20 1 1 1 1 0.000700 0.013800 0.00000 0. 0. 0. 0 0 1.0600 
19 33 1 1 1 1 0.000700 0.014200 0.00000 0. 0. 0. 0 0 1.0700 
20 34 1 1 1 1 0.000900 0.018000 0.00000 0. 0. 0. 0 0 1.0250 
22 35 1 1 1 1 0.000000 0.014300 0.00000 0. 0. 0. 0 0 1.0250 
23 36 1 1 1 1 0.000500 0.027200 0.00000 0. 0. 0. 0 0 1.0000 
25 37 1 1 1 1 0.000600 0.023200 0.00000 0. 0. 0. 0 0 1.0250 
29 38 1 1 1 1 0.000800 0.015600 0.00000 0. 0. 0. 0 0 1.0250 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.9200 1.0800 0.0000 0.9500 1.0500 
0.00 0.9200 1.0800 0.0000 0.9500 1.0500 
0.00 0.9200 1.0800 0.0000 0.9500 1.0500 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.8750 1.1250 0.0000 0.9500 1.0500 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

0 39 

7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

-999 

3. Dynamic Data of the New England System 
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NEW_ENGLAND SYSTEM STABILITY RELATED PARAMETERS OF GENERATOR & EXCITATION & GOVERNOR 
Generator transient parameter follows 
Num Gen_  name  Xd  Xq X'd  X ' q  Rs  T 'do  T 'qo  Mg Dg  
30  BUS30™ .  0 ,  . 1000  0 .  . 0690  0  .  . 0310  0  . 0690  0  . 0002  10  .2000  0 .  . 010  84  .  , 000  5  . 000  
31  BUS31  0 .  . 2590  0 .  . 2820  0 .  . 0700  0 .  . 1700  0 .  . 0002  6  .  . 5600  1 .  . 5000  60 .  . 600  5  .  000  
32  BUS32  0 .  . 2500  0  .  . 2370  0 .  . 0530  0 .  . 0880  0  . 0002  5 .  . 7000  1 .  , 5000  71 .  , 600  5  .000  
33  BUS33  0 .  . 2620  0  .  . 2580  0 .  . 0440  0  . 1660  0  . 0002  5  .  . 6900  1 .  . 5000  57 .  . 200  5  . 000  
34  BUS34  0 .  . 6700  0 .  . 6200  0 .  . 1320  0 .  . 1660  0 .  .  0002  5  .4000  0 .  . 4400  52  .  , 000  5  . 000  
35  BUS35  0  ,  . 2540  0 .  . 2410  0 .  . 0500  0  . 0810  0  . 0002  7 .  . 3000  0 .  . 4000  69 .  , 600  5  .000  
36  BUS36  0 .  . 2950  0  .  . 2920  0 .  . 0490  0 .  . 1860  0 .  . 0002  5 ,  . 6600  1 .  . 5000  52 .  . 800  5  .000  
37  BUS37  0 .  . 2900  0 ,  . 2800  0 .  . 0570  0  . 0910  0 .  . 0010  6 ,  . 7000  0 .  . 4100  48  .  , 600  5  .000  
38  BUS38  0 .  . 2110  0 .  . 2050  0 .  . 0570  0  . 0590  0  . 0002  4  .  .  7900  1 .  , 9600  69 .  , 000  5  .000  
39  BUS39  0 .  .  0200  0 .  . 0190  0 .  . 0060  0 .  .  0080  0 .  . 0002  7 .  .  0000  0 .  . 7000  1000 .  . 000  10  .000  
-999 
Generator control system ( excitor + AVR + governor ) parameter follows 
Num Gen_  name  Ke  Te  Se  Ka  Ta  Kf  T f  Tch  Tg  Rg  
30  BUS30  1 .  0000  0  ,  . 2500  0  .  . 0000  20  ,  ,  0000  0 .  . 0600  0 .  .  0400  1 .  . 0000  1 .  . 6000  0 ,  . 2000  0 ,  . 0500  
31  BUS31  1 .  0000  0  .  . 4100  0  .  .  0000  40  , . 0000  0  . 0500  0  . 0600  0  .  . 5000  54  .  . 1000  0 .  . 4500  0  . 0500  
32  BUS32  1 .  0000  0 ,  . 5000  0 .  .  0000  40 .  ,  0000  0 .  .  0600  0 ,  .  0800  1 .  . 0000  10  , .  0000  3  .  .  0000  0  .  0500  
33  BUS33  1 .  0000  0  ,  . 5000  0  .  . 0000  40 .  . 0000  0  . 0600  0 ,  . 0800  1 ,  . 0000  10  , . 1800  0 .  . 2400  0  . 0500  
34  BUS 3  4  1 .  0000  0  .  . 7900  0  .  .  0000  30 .  . 0000  0  . 0200  0 ,  . 0300  1 .  . 0000  9 ,  . 7900  0  . 1200  0  . 0500  
35  BUS35  1 .  0000  0 .  . 4700  0  .  .  0000  40 .  .  0000  0  . 0200  0 ,  . 0800  1 .  . 2500  10 .  . 0000  3  , . 0000  0  . 0500  
36  BUS36  1 .  0000  0 .  . 7300  0  .  .  0000  30  .  . 0000  0  . 0200  0  . 0300  1 .  . 0000  7  ,  . 6800  0  ,  . 2000  0  . 0500  
37  BUS 3  7  1 .  0000  0 .  . 5300  0 .  .  0000  40 .  .  0000  0 ,  . 0200  0 .  . 0900  1 .  . 2600  7 .  .  0000  3  , .  0000  0 .  . 0500  
38  BUS 3  8  1 .  0000  1 ,  . 4000  0  .  .  0000  20 .  . 0000  0 ,  . 0200  0 .  . 0300  1 .  . 0000  6  , . 1000  0 ,  . 3800  0 ,  . 0500  
39  BUS39  1 .  0000  1 .  . 0000  0  .  .  0000  20 .  . 0000  0  .  . 0200  0 .  . 0300  1 .  . 0000  10  , . 0000  2  ,  .  0000  0 .  . 0500  
-999 
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Appendix 2: Application of symbolic computing 

In proposed eigenvalue tracing method, (4.1.12) needs to be solved. 

— A j l  ~ F y  0 v* -v/ F X VR  + F y U R  

v 0 - F y  V/ V/ F X
V I  + F y U j  

~ G X  0 - G y  0 0 0 Ù .R G x V R  +  G y U R  

0 ~Gx 0 - G y  0 0 Ù J G  X V I  +  G y U j  

v/ -v/ 0 0 0 0 4 0 

v/ T  0 0 0 0 À, 0 

(4.1.12) 

The derivative of Jacobian matrix on the right hand side of (4.1.12) is required. The 

expression of element on ith row and jth column of FY is given in (4.1.13) 

p ^y(y) 3X dFm) BY BFm) 
Y ( i j )  +  + "  (4.1.13) 

dX da ÔY da da 

In the program code, the explicit expression of Jacobian derivative has to be 

included to speed up the code execution time. 

To show the complexity of this expression, the code to compute just one element of 

Fy is shown below: 

Fydot(jj*9+2,jj*2+2) = 

Fydot (j j *9+2,jj *2+2)+Tangent(jj *9+1)*((Xdprime(genNo)*(Rs(genNo)*X(m+jj *2+1 
)*sin(-X(j j *9+1)+X(m+j j *2+2))-Xqprime(genNo)*X(m+jj *2+1)*cos(-
X(j j *9+1) +X (m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))A2*(Rs(g 
enNo)*X(jj *9+3)-X(j j *9+4)*Xdprime(genNo)-Rs(genNo)*X(m+jj *2 + 1)*cos(-
X(jj *9+1)+X(m+jj*2+2))-Xdprime(genNo)*X(m+jj *2 + 1)*sin(-
X(jj *9+1)+X(m+jj *2+2)))+Xdprime(genNo)*(Rs(genNo)*X(m+jj*2+l)*cos(-
X(jj *9+1)+X(m+jj *2+2))+Xqprime(genNo)*X(m+jj *2+1)*sin(-
X(j j *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))A2*(-
Rs(genNo)*X(m+jj *2+1)*sin(-
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X(jj *9+1)+X(m+jj *2+2))+Xdprime(genNo)*X(m+jj *2+1)*cos(-
X(j j *9+1)+X(m+j j *2+2)))+Xdprime(genNo)*(-Rs(genNo)*X(m+jj *2+1)*cos(-
X(jj *9+1)+X(m+jj *2+2))-Xqprime(genNo)*X(m+jj *2+1)*sin(-
X(jj *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))A2*(Rs(g 
enNo)*X(m+j j *2 + 1)*sin(-X(jj *9+1)+X (m+jj *2+2))-
Xdprime(genNo)*X(m+jj *2+1)*cos(-X(jj *9+1)+X(m+jj *2+2)))-(X(j j *9+3)-
Xdprime(genNo)*(Rs(genNo)*X(jj*9+4)+X(jj*9+3)*Xqprime(genNo)+Rs(genNo)*X(m+ 
jj *2 + 1)*sin(-X(jj*9+l)+X(m+jj*2+2))-Xqprime(genNo)*X(m+jj*2+l)*cos(-
X(j j *9+1)+X(m+jj*2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo)) ) * (-
Rs(genNo)*X(m+jj*2 + l)*cos(-X(jj *9+1)+X(m+jj*2+2))-
Xdprime(genNo)*X(m+jj *2+1)*sin ( -
X(jj *9+1)+X(m+j j *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))-
Xqprime(genNo)*(-Rs(genNo)*X(m+jj *2+1)*cos(-X(jj *9+1)+X(m+j j *2+2))-
Xdprime(genNo)*X(m+jj *2+1)*sin(-
X ( j j *9+1) +X (m+j j *2+2) ) ) / (Rs (genNo) A2+Xdprime (genNo) *Xqprime (genNo) ) A2* (Rs (g 
enNo)*X(j j *9+4)+X(j j *9+3)*Xqprime(genNo)+Rs(genNo)*X(m+jj *2+1)*sin(-
X(jj *9+1)+X(m+jj *2+2))-Xqprime(genNo)*X(m+jj *2+1)*cos(-
X(jj *9+1)+X(m+jj *2+2)))-Xqprime(genNo)*(Rs(genNo)*X(m+jj *2+1)*sin(-
X(jj *9+1)+X(m+jj *2+2))-Xdprime(genNo)*X(m+jj*2+l)*cos(-
X(jj *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))A2*(-
Rs(genNo)*X(m+jj *2+1)*cos(-X(jj *9+1)+X(m+jj *2+2))-
Xqprime(genNo)*X(m+jj *2+1)*sin(-X(j j *9+1)+X(m+jj *2+2)))-Xqprime(genNo)*(-
Rs(genNo)*X(m+jj *2+1)*sin(-
X(j j *9+1)+X(m+jj *2+2))+Xdprime(genNo)*X(m+jj *2+1)*cos(-
X(jj *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo))A2*(Rs(g 
enNo)*X(m+jj*2+l)*cos(-
X(jj *9+1)+X(m+jj *2+2))+Xqprime(genNo)*X(m+jj *2 + 1)*sin(-
X(jj *9+1)+X(m+jj *2+2)))-(X(jj *9+4)+Xqprime(genNo)*(Rs(genNo)*X ( jj *9+3)-
X(jj *9+4)*Xdprime(genNo)-Rs(genNo)*X(m+jj *2+1)*cos(-X(j j *9+1)+X(m+jj *2+2))-
Xdprime(genNo)*X(m+jj *2 + 1)*sin(-
X(jj *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo)))*(Rs(ge 
nNo) *X (m+j j *2+1) *sin ( -X ( j j *9+1) +X (m+j j *2+2) ) -
Xqprime(genNo)*X(m+jj *2+1)*cos(-
X(jj *9+1)+X(m+jj *2+2)))/(Rs(genNo)A2+Xdprime(genNo)*Xqprime(genNo)))/Mg(gen 
No) ) ; 

Without the symbolic computing, one has to derive similar expression for all 

elements of 
Fx Fy 

Gx 1 

It's very difficult for any one to get this result manually without any mistakes. 

During the programming process of proposed eigenvalue tracing algorithm, we found a 

solution based on MATLAB symbolic computing functions. 

Let's illustrate this process by an example 

The MATLAB code consists of three lines: 
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syms x 
y=xA3; 
ydot = jacobian(y,x) 

The execution result is: 

ydot = 3*Xa2 

First line defines x as symbolic variable. The second line defines y=x3. The third 

dy , 
line calculate the — with MATLAB provided function "jacobian". The result is 3x . 

In our programming for eigenvalue tracing, the explicit expression of derivative of 

Jacobian matrix is derived from MATLAB symbolic computing. This has helped make our 

code more mistake-proof and speed-up the programming process. In the future industry 

application of this algorithm, this symbolic technique is suggested to help produce source 

code. 
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Appendix 3: Some special cases in oscillatory stability margin 
boundary tracing 

In all simulated cases, the critical eigenvalue in first margin point always is the 

critical eigenvalue at every traced margin point during the entire tracing process. 

For some very nonlinear system, theoretically there is the possibility that one pair of 

conjugate complex eigenvalues is the critical eigenvalue with [A > A ], and the other different 

pair of conjugate complex eigenvalues becomes the critical eigenvalue with [A > . 

The critical eigenvalue could be switched as shown in Fig 1. The thick line from 

point A to D and C is actual margin boundary. 

irn 

O Re 

(m 

O Re Re Re 

Figure 1 When Margin Boundary with Two Critical Eigenvalues 

To handle this situation, we improved our procedure as follow: 

1) With predictor and corrector, tracing margin boundary from point A to B 
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2) At the last traced margin point, compute system dominant eigenvalue, 

if no other eigenvalue has crossed imaginary axis, the problem is solved. 

Otherwise, go to step 3). 

3) With the eigenvalue tracing method presented in Chapter 4, find the actual 

oscillatory stability margin, (which is shown as point C in Fig 1). Trace margin boundary 

backward and/or forward with /3 value decreasing or increasing, until margin value equal to 

previous traced margin boundary with the same |8 value. (This process can be shown as from 

point C to point D in Fig 1.) Then, go to step 2). 
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