IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

2005

A novel approach for identification and tracing of
oscillatory stability and damping ratio margin
boundaries

Xiaoyu Wen

Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
0 Part of the Electrical and Flectronics Commons

Recommended Citation

Wen, Xiaoyu, "A novel approach for identification and tracing of oscillatory stability and damping ratio margin boundaries " (2005).
Retrospective Theses and Dissertations. 1604.
https://lib.dr.iastate.edu/rtd /1604

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1604?utm_source=lib.dr.iastate.edu%2Frtd%2F1604&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A novel approach for identification and tracing of oscillatory stability and damping ratio

margin boundaries

by

Xiaoyu Wen

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Major: Electrical Engineering (Electric Power)

Program of Study Committee:
Venkataramana Ajjarapu, Major Professor
Degang J. Chen
Wolfgang Kliemann
James D. McCalley
Vijay Vittal

Iowa State University
Ames, Iowa
2005
Copyright © Xiaoyu Wen 2005. All rights reserved.



UMI Number: 3184662

Copyright 2005 by
Wen, Xiaoyu

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3184662
Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ii

Graduate College

Towa State University

This is to certify that the doctoral dissertation of
Xiaoyu Wen

has met the dissertation requirements of Jowa State University

Signature was redacted for privacy.

Major Professor

Signature was redacted for privacy.

For the Major Program



il

Table of content

Chapter 1 INtrOAUCHION ...c.eoeieeeiieriieeeetereeetee ettt r s et ne st ne e e s eenens 1
Chapter 2 The DAE model of electric pPOWET SYStEIMS. ......cccevrvrerreeerierrrereenirenreeeeereeseesereseees 6
2.1 Formulation of the Power System DAE model ........cccocoiiiiiiiiiiiininicneeeeceeee 6
2.1.1 Synchronous GENETALOT........c.cuerruiierrierrireeeereeeee s eneeseeee et esreeseseesesreseneesseesoeesnnes 6
2.1.2 Excitation Control SYSIEM .....c..uuieiieriirieeieeiteerteseesiesrieeecreeesaeesereessaressaessaessnnesns 7
2.1.3 Prime Mover and Speed GOVEIMOT .........coocueeireeirnieierceenietncenere st seeennes 8
2.1.4 Nonlinear Load MOdEl.........ccoviriiiiiireeieeteese et e s et snas 9
2.1.5 LTC MOGQEL...cineiieeeeeet ettt sttt e e st e e st e st e smeannsene 10
2.1.6 Network POwer EQUations .........coovoiiiririniinicriiies st 10

2.2 The parameterization of DAE model.........c.cccocoviviniiniiiniiniiniinienennnicnenncnenceens 11
Chapter 3 Literature REVIEW .....ccceouiriiiiiiirieteieeertecrtrre sttt ere s et esat e st et et e snesae 15
3.1 INErOAUCHION. ...ttt ettt et te s e et e sae et esaseesaesnnesnesaneeenenaeenesaee 15
3.1.1 The direct method to identify oscillatory stability loading margin........................ 16
3.1.2 Eigenvalue based method to identify the oscillatory stability loading margin...... 18
3.1.3 The manifold-based method to identify oscillatory stability margin.................... 21

3.2 Damping ratio MAIZIN......ccoveeeeirreerereerienteeerreeeeressesserreateseessesaressessesssesssessessssneeessens 21
3.3 Oscillatory stability and damping margin boundaries tracing..........cecceeeeevversuenscecnenes 23
Chapter 4 Oscillatory stability margin and damping margin identification .........cc.ccecvevuenneee 25
4.1 Oscillatory stability margin identification .........cecceeeeeeierierieniieercrcee e 25
4.2 Simulation result for oscillatory stability margin identification..........ccccocevcvercriecreenns 35
4.3 Damping margin identification.........c.cceeiierieiiiciire e 39
4.4 Simulation result for damping margin identification..........cccceecveeveererereeneencnne. e 40
4.5 Discussion of the practical aspects of the proposed algorithm.........c..cccoeocinniiicns 41
4.5.1 Consideration for cases if the eigenvalue index doesn’t work..........cccccvvverevecencen 41
4.5.2 Consideration of Discrete EVEnts........cccoveviirienieniiiienienceeieneecicnecsrenecenrecnecanens 47

4.6 Computational COMPATISOI.......cceruteriieeeierieneeeereneereeseesereeesreeeseeseneessreesnnesseonesenes 49

4.6.1 Step length selection and aCCUTACY ....c..covevvieririienrirereenterresteerenae e eoreans 49



iv

4.6.2 Estimation of computational COSt.........ccueviviiriiiiriienienieceerres e 53
4.6.3 Robustness of the algorithms ........ccccevereriinenniniceereeeeeee et 55
Chapter 5 Oscillatory stability and damping ratio margin boundary tracing...........cceccevveuenne 60
5.1 Oscillatory stability margin boundary tracing .........cccceccevvveeerreesiersesseeeinesessecscnseenens 60
5.1.1 Augmentation for boundary traCing.........ccceeeeeimeeevcrseerseerreneeseerereseeeseeesesseeosenns 63
5.1.2 Boundary predictor .......c.ccecvirieiieiinicniiienicieeteeentesc sttt essesneenenan 65
5.1.3 BOUNAATY COTTECLOT ......ueeeruiiruireneeeieeierreeeeeeeteeneestesntesntesseneenaeesmnresseesnsnesrenes 66

5.2 Damping ratio margin boundary tracing.........ccc.cecceeveeveerrerernerieeenieererreseesesenesaeennes 69
5.3 SIMUIAtION TESUILS .....eveieieieeieetieteee ettt e e e e e e e e e e ees 70
5.3.1 Oscillatory stability margin boundary tracing .........c.cceeeueevueecereerriereeencresvnareneenans 70
5.3.2 Damping ratio margin boundary tracing........c.ccceceeceeversveeserserseersrernescreseeeneesscnne 74

5.4 Computational ASPECLS ......ceerertreierieriteieeterterteeeerre s e st essteesresneseseesreesresenesneeesans 78
Chapter 6 CONCIUSIONS .....vviiureereereneerreerrteretenreesiteeeeestee st esseesee e s et essataesstessstaesneessseeaseasnnene 82
R OIENCES .. vttt ettt et e e et r s e st e s e e eabe e be s e be e ee e e se e et eesneesmneeneean 85
Appendix 1: Data of test case- New England system..........cccoeevcivininiiiiininnncenenenennen 90
Appendix 2: Application of symbolic COMPULING........cccueeririrvrinerieirrcirieiteee e 93
Appendix 3: Some special cases in oscillatory stability margin boundary tracing ............. 96
AcCKNOWIEAZEIMENLS: ...oeeiiiiiiieiiiieiieieten ettt cree e re e s nt e seoncssmnesanns 98



Chapter 1 Introduction

The electric power industry is undergoing worldwide deregulation and restructuring.
In the past, one company provided all the functions of electric service (generation,
transmission, distribution, and retail sales). With competition, these functions are separated
into different companies. Generation, or production of electricity, was deregulated in North
America around 1995, resulting in an ample supply of new, cleaner and more efficient power
plants. With electric competition, retail electric providers sell electricity and provide
functions such as customer service and billing. Retail Electric Providers compete for
customers business by offering lower prices, renewable energy options, added customer

service benefits or other incentives.

On the other hand, deregulation also brought a great challenge and opportunity for
the electric power industry. Power producers, distributors and their suppliers are asked to be
innovative and satisfy the consumers demand for more choices while operating
competitively. The Independent System Operator (ISO) and transmission service provider
(TSP) are encountering uncertain power flow patterns in the system due to unpredictable
bidding strategies of the power producers. If the ISO or TSP fails to predict or detect
congestions due to these patterns, the reliability of the power grid will be significantly
reduced. The deterioration of the system operating conditions makes the power system more
vulnerable to disturbances. In many cases, power is transferred via a highly stressed network.
Large scale system instabilities have been experienced all over the world. On July 2, 1996,

the WECC system experienced a major blackout caused by voltage instability. One month



after this disturbance, on August 10, 1996, another major blackout occurred in WECC. This
time, as a result of undamped oscillations, the system split into four large islands. Over 7.5
million customers experienced outages ranging from a few minutes to nine hours. On August
4, 2000, poorly damped power oscillations were observed across the WECC system
following the Alberta separation [1]. In the New England Electric System, system monitoring

devices also recorded oscillatory responses of major event [2].

Currently, in North America, ISO only considers thermal limits in identifying
transmission congestion, i.e., for any post-contingency, no transmission line, transformer or
breaker’s thermal rating is exceeded. Some transmission companies also started to apply
voltage stability analysis software to monitor voltage stability in operations. In June, 2005,
the ERCOT (Electric Reliability Council of Texas) ISO became the first ISO in North
America to implement voltage stability assessment in real time operations. For every hour,
VSAT (Voltage Security Assessment Tool by Powertech Labs) is executed with the most
updated EMS state estimator results. More than two thousands contingencies and six power
transfer scenarios are considered. Any transmission congestion constrained by a voltage

stability margin will be identified and considered in market operations.

With VSAT, long execution time is still a problem in power system real time
operations. Two thousand contingencies are defined, but only around two hundred
contingencies are chosen for the next step screening process according to geographic
information. Finally, around twenty of the most critical contingencies are picked for P-V
curve tracing to find a voltage collapse point with respect to six different transfer increasing

scenarios.



Oscillatory stability also plays a very important role in maintaining power system
security as indicated in the disturbances mentioned in the previous pages. Recently (May 27,
2005) an apparent protection system failure in Hydro One’s system in Canada produced
power system oscillations and line outages that effected frequency in the eastern inter

connection.

Oscillatory instability is an inherently nonlinear phenomenon that is related to
bifurcation from the viewpoint of nonlinear dynamic systems. Substantial research has been
conducted to help understand and analyze the mechanism of this type of instability based on
Hopf bifurcation theory [3], [4], [5], [6]. Hopf bifurcation occurs when a pair of complex
eigenvalues crosses the imaginary axis when a parameter in the system is varied. Depending
on the type of Hopf, this may lead to unstable oscillations in the system. Improper tuning of
generation control parameters may lead to Hopf bifurcation [7], [8], [9]. Nonlinear load may
also lead to Hopf bifurcation [10]. References [4], [11], [12] present an analysis related to a
1992 disturbance on the midwestern segment of the US interconnected power system and the
resulting oscillations caused by line tripping. It confirms that the event was indeed related to

a Hopf bifurcation.

The essential information of a Hopf bifurcation can be obtained in terms of
eigenproperties of the reduced power system matrix of a structure-preserving power system
model described by differential algebraic equations [13]. This matrix is called the dynamic

system state matrix.

Damping also plays an important role in power system oscillations. Margin related

to damping can be defined as the amount of additional load on a specified pattern of load



increase that would cause the damping ratio to reach its minimum limit. In the oscillatory
stability assessment, in order to keep the system far away from the minimum damping limit,
the damping ratio margin needs to be checked for each contingency and power transfer

scenario.

WECC [14] recommend the following criteria in determining the safe operating

limits:
The operating point is acceptable from the damping standpoint if:

With the path flow increased by the larger of 100 MW or 5 percent of the power

transfer, any N-1 contingency will not result in undamped oscillations or instability;

With the path flow increased by the larger of 100 MW or 2 1/2 percent of the power

transfer, any N-2 contingency will not result in undamped oscillations or instability

The motivation of this research is to establish a framework that can assess the
oscillatory security level of the current operating point by quickly identifying and estimating
the oscillatory stability margin and damping margin for pre-contingency and post-
contingency conditions. This framework provides the relationship between the system
parameters (including controllable parameters) and the oscillatory stability and damping
margins. This information can be effectively used for optimal control design to avoid

undesirable system behavior.
The thesis is organized as follows:

In chapter 2, the Differential-Algebraic Equation (DAE) model of the electric power

system will be introduced. .



Chapter 3 provides a critical review of various existing methods that are available
for oscillatory stability assessment. Chapter 4 presents, an eigenvalue tracing methodology to
identify an oscillatory stability margin, as well as a damping margin. The methodology is
demonstrated through the New England test system. Computational issues related to this
technique are discussed in detail. Chapter 5 proposes algorithms to trace oscillatory stability
and damping margin boundaries. Chapter 6 concludes with the major contributions of this

thesis.



Chapter 2 The DAE model of electric power systems

2.1 Formulation of the Power System DAE model

The studied power system is assumed to have n buses and m generators. Every
generator is assumed to be equipped with the same type of speed governor and excitation
control system, but the dynamic model parameters of different generator could be different.
The formulation of power system modeling will be presented in this chapter. The most

commonly used power system notations are adopted.

2.1.1  Synchronous Generator

Without loss of generality, the m™ generator’s rotor angle can be chosen as the system
angle reference. The two-axis model [3][15] describing the synchronous machine dynamics

can be given as:
8i=(mi-mm)0)0 i=l.m-1 (2.1.1)

Qi =Mi_1[Pmi - Dy(o,; _O)m)_(E:]i _Xr’ii‘[di)‘[qi _(E:ii +X¢’1i1qi)jdi]

i=1..m 2.12)
E;i =Td—01i[Efdi —Ec;i - (X, —X;i)ldi] i1=1..,m (2.1.3)
By =T [-Ey +(X, = X1 ,] i=L.m (2.1.4)

Where o, is the system frequency, ©; is the machine frequency, namely, generator

angular speed and o is the system rated frequency (377.0 rad /sec=60Hzx2w rad). I; and I,



are direct axis and quadrature axis currents respectively; Ej; and E;, are transient direct axis

and quadrature axis EMF respectively; Tq; and Ty; are direct axis and quadrature axis open

circuit time constants respectively; X;,and X are direct axis and quadrature axis transient

reactances and Rj; is armature resistance of the machine; M; is inertia constant and D; is the
damping constant of the machine. All the quantities are per unit except ay.

Interface voltage equations to the network are given as follows:

=V, cos(8;, —0,)+ R,;I ; + X;,,.Id,. (2.1.5)

sit qi
Ey =V,sin(8; —0,)+ Rl 5 — X .1 ,; (2.1.6)
Where V; and 6 are bus voltage and angle respectively.

The machine currents I and I,; can be eliminated by solving the generator interface

equations to the network. Hence,

I;=[R,E;+E X, —RV,sin@® —-6,)—X_ ¥, cos(5, -96,) 14" (2.1.7)
1, =[Rs1Eq1 ~E; Xy~ RV, cos(8, ~6,)~ X,V sin(8, -6,)]14;" (2.1.8)
4,=R; +Xz'iiX¢'1i (2.1.9)

Note that (2.1.1) does not include the differential equation for &,, and that all the

angles here and henceforth are relative angles with respect to the my, generator’s rotor angle.
2.1.2  Excitation Control System
The simplified IEEE type DC-1 excitation system [3] as shown in Fig.2.1 is used

here. The corresponding mathematical model is

E =TV, ~[Su(E u)IE ] i=1,..,m (2.1.10)



V=T [V, +K Vs =V, ~ R )] i=1,.,m (2.1.11)
If
Vri,min < Vri S Vri,max . Vesi=0 (at Steady State)

R, =T;[—Rﬁ -[K,, +Sei(éfdi)]KﬁEfdi IT,+K,V,/T,]
i=1,..,m (2.1.12)
where V,.; is the reference voltage of the automatic voltage regulator (AVR); V,; and
Ry are the outputs of the AVR and exciter soft feedback; Eg; is the voltage applied to
ggnerator field winding; Ty, T.; and 75 are AVR, exciter and feedback time constants; Ky, K

and Kj are the gains of AVR, exciter and feedback; V}imin and ¥V};max are the lower and upper

limits of V.
2.1.3  Prime Mover and Speed Governor

Fig. 2.2 shows the block diagram for a simplified prime mover and speed governor.

Two differential equations are involved to describe the dynamics when no p, limit is hit.

B,=T; W, ~P,)  i=l.,m 2.1.13)
“‘i =Tg;l[Pgsi ——(mi _O)ref)/Ri '—“i] lf}l,’mm Sy S“‘i,max
i=l..,m (2.1.14)

0 - - - . 0
where P, = P, ;(1+ K1) is the designated real power generation; 7,

e 18 1ts setting

at base case; K, is the generator load pick-up factor that could be determined by AGC, EDC

or other system operating practices; P,; is the mechanical power of prime mover and p, is



the steam valve or water gate opening; R; is the governor regulation constant, representing its

inherent speed-droop characteristic; o, (=1.0) is the governor reference speed; Tcn and T,
are the time constants related to the prime mover and speed governor respectively; p; .. and
H;max are the lower and upper limits of p, where a parameter p is introduced to designate

the system load level. At the base case, p equals zero.

S (E.;) ta—
V /———-— Vr’max e( fd)
Vref -+ 4+ - K, Ve + ¥+ 1 Efd»
B - 1+T,8 - |7.8
_1
K e [
AVR with limits
Rr [k,s
1+7,S
Figure 2.1: The IEEE type DC-1 excitation system
w Pgs /— Mmax b
w-ﬂ>!+—> —1_ —»!-'L 1 - 1 m»
- R| -~ |1+1,8| w |1+T,S
_/ .
Speed governor Prime-mover

Figure 2.2 The simplified speed governor and prime mover

2.1.4 Nonlinear Load Model

The voltage and frequency dependent load is modeled as follows for all the load

buses.
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P, =PV, V)" 1+ K, (0, —®,)]
{’ w02/ Vio)" 1 Ko i=1,..,m (2.1.15)

O = Qo V; /Vio)ﬁi [1+K,,:(», -0,)]

Where Py, and Qy, are the active and reactive powers consumed by the load at the
nominal voltage V; and frequency w, (=1.0). The frequency dependent term is included to
prevent the equilibrium computation from divergence in case all the generators reach their
maximum real power limits due to load increase or generator outages. Here K,y and Kj,r are

the load changing factors with respect to system frequency.
215  LTC Model

Continuous on Load Tap Changer (LTC) model is taken.

Assume there is an LTC between bus i and j,

V,=rV, (2.1.16)
Tr=V7 -V, (2.1.17)
Where r is the ratio position of an LTC; ¢ is the number of LTC,; Vj’ef is the reference

voltage at the LTC regulated bus j; T, is the time constant.

t
2.1.6  Network Power Equations

Corresponding to the above models, the network equations can be written as:

0=P, —(+K,,u)P, - P,
{ ¢ wit)Fi = F i=1..,n (2.1.24)

0= Qgi - (1 + qui:u)Qli - Qti

Where
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n
P, = zVinYik cos(0; =0, —¢y)
k=1

- i=1,..n (2.1.25)
Qi = 2 ViV Yysin(®; -0, — ;)
k=1
and
P,.=1,V.sin(d,—-0,)+1_V cos(d, -6,
o = LaVisin®, =6)+ I,V cos(6,-6) | (2.1.26)
Qg =1,V,;c0s(8, —0,)— 1V, sin(3, -0,)

P, and Q) are the generator output powers, which are primarily determined by the

inherent characteristics of the speed governor and the AVR regulations. They will change if
real power generation rescheduling and secondary voltage control is activated. P, and Qy; are

the powers injected into the network at bus i. K, and K, are the load changing factors

Ipi lqi
specified for bus i. It should be noted that (2.1.24) is generic in the sense that it is used for all

of the buses.

2.2 The parameterization of DAE model

The entire electric power system can be represented by differential and algebraic

equations (DAE):

{X=F(X,Y,a,ﬂ); (2.2.1)

0=GX,Y,a, p);
In the equation (2.2.1), the differential equation describes the dynamics associated
with the generators, the excitation systems, the prime movers, and the speed governors. The

algebraic equation represents the network power balance equations. X is the vector of the
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state variables for differential equations with length n, X = (6,@,E,,E;, P, 1,E,.V,.R,) | Y

is the vector of algebraic variables with length m, ¥ =(V,0). a is the parameter chosen for
bifurcation analysis. In the power system, « represents the load level of the entire system. 8

represents the control change parameter.

In the load parameter space Z; =(F;,0;) (i=1, ..., |, where [ denotes the number
of load buses in the power system), the load at each bus will be changed with the parameter «,

F, = ELO(l+aKiPL);
O = QiLO(1+aKiQL);

The constant K;p; and K;g; define the 'scenario for load level change.

In the control parameter space U; = (V,s:K,i>*)) (i =1, ..., k, where k denotes the
total number of possible controls in the system.), all the control parameters are changed with
the parameter 3 change.

Vreﬁ = Vreﬁo 1+ IBKinef);
K, =K, (+BKy,); (2.2.2)

The constant K., Kika, €tc, define the scenario for control vector change.

For some parameter not controllable in power system, also can be used to find
impact of its value variation on oscillatory stability margin, or damping margin. For example,
the oscillatory stability margin after transmission line tripping can be obtained if one let

susceptances Bj; and Admittance Yj; of transmission line become
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0 .
Bij = Bij(l—ﬁ)a

Y, = 1°(1- By Where  €[0,1] (2.2.3)

0

When the parameter 8= 0, B; =B} and ¥; =Y, . When the parameter 8= 1, B; =0

and Y; =0 This represents the line between bus i and j is tripped. When one trace the

margin boundary with 8 value gradually moving from zero to one, the margin value with 8=

1 is the post contingency oscillatory stability margin.

In the margin identification, the parameter B is fixed as zero. For the margin
boundary tracing, both parameters(c and 8) will be changed. It becomes a two parameters

variation problem.

When the parameter in (2.2.1) is varied, the corresponding state vectors X, Y and the

eigenvalues of the system matrix are evaluated on this path change accordingly.

Linearization of (2.2.1) at the equilibrium point with parameter & and 8 leads to:

AX| [Fe Fax y AX
o| |G, G, |AaY| | Ay (2.24)

Matrices Fy, Fy, Gx, and Gy contain the first derivatives of F' and G with respect to

X and ¥, evaluated at the equilibrium point.

Note that the matrix Gy is an algebraic Jacobian matrix that contains the power flow

Jacobian matrix.

In the above equation, if det(Gy) does not equal zero,

AY =-G;'GyAX (2.2.5)
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Substituting in (2.2.4) results in
AX = A, AX (2.2.6)

Asys = FX —FYG;IGX (227)

The essential small-disturbance stability characteristics of a structure-preserving
model are expressed in terms of eigenproperties of the reduced system matrix Ay This

matrix is called the dynamic system state matrix.

Figenvalue analysis of 4, will give small signal stability information of the current
equilibrium point under small disturbances. At voltage collapse, the system loses the ability
to supply enough power to a heavily-loaded network. At that point, the so-called saddle node
bifurcation .occurs, which is described by the movement of one eigenvalue of A, on the real

axis as it crosses the origin from the left half of the complex plane. Eigenvalue computation
can detect this movement. When the Hopf bifurcation occurs, the Jacobian matrix 4 of the
system has a simple pair of purely imaginary eigenvalues and there are no other eigenvalues
on the imaginary axis. At the point of Hopf bifurcation, the power system can experience
undamped oscillations. Similarly to saddle node bifurcation, Hopf bifurcation can also be

identified by tracing the critical eigenvalue.
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Chapter 3 Literature Review

3.1 Introduction

The loading margin is defined as the amount of additional load on a specified
pattern of load increase that would cause power system instability. In Fig 3.1, the load level
at A0, after subtracting the base-case load level, is called the voltage stability loading margin.
Similarly, the load level at Al, after subtracting the base-case load level, is called the
oscillatory stability loading margin. The load level at A2, after subtracting base-case load

level, is called the damping ratio loading margin.

A Voltage Damping ratio boundary for damping D,
' \. Oscillatory stability margin boundary

;
:
;
?
E
,
3
< ’
.0' 7’ 4
.. ’ - s
AJ . _-
Al -

Base Case Al

Voltage stability margin boundary
(04

A
-

Figure 3.1: Illustration of three types of margin boundaries

The respective margin boundaries (as shown by dashed lines in Fig. 3.1.) can also be
obtained by any control parameter change starting with A2, Al and A0Q. In the literature
various methods are proposed to identify these boundaries. These methods can be broadly

classified as direct and indirect methods. The indirect methods can also be divided into
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eigenvalue-based methods and the manifold-based method. The following sections will

review these methods.

3.1.1 The direct method to identify oscillatory stability loading margin

The direct method can identify the oscillatory stability margin directly without

computing any intermediate operating points.
Define 4 as the eigenvalue of Ay, and v represents the eigenvector of Ay Then,

A, v=2 (3.1.1)

Define the extended eigenvector ¥ =—Gy_lGXV; the following equation can be

obtained.

Fy Fov| (M .
G, G |u|7|o (3.1.2)

Reference [16][17] and [18] present the direct method, which rewrites u, v and 4

into the form

V=V, + jv,; Ve,V €R”
u=up+ ju;; Where {Up,4; €R" (3.1.3)
A=r+js; r,seR

At the Hopf bifurcation point, the real part of the dominant (i.e. right-most)

eigenvalue is zero, i.e. r=0.

Then the equation (3.1.2) becomes:
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Fovp+Fu,+sv, =0
F, F . Fov, +Fu,—sv, =0
x  Fy vi_Jsv — JExVr T R (3.1.4)
Gy Gylu 0 Gyvg +Gyup =0
Gyv, +Gyu, =0

With
{VR(” - (3.1.5)
Vigy = 0 o

Where Vi) denotes the i™ element of vz vector.

Hopf bifurcation is obtained by solving equations (3.1.4) and (3.1.5) together with

system equilibrium equation (3.1.6).

{O=F(X,Y,a); (3.1.6)

0=G(X,Y,a);

There are 3(m+n)+2 independent equations in (3.1.4) (3.1.5) and (3.1.6). There are

3(m+n)+2 unknown variables: {X, Y, vg, Vi, uz, us, @, s}.

References [17] and [18] first applied the direct method in the identification of the
power system oscillatory stability margin. Solving of these equations is also complex and
sometimes the traditional Newton-based optimization techniques can lead to difficulties or
failure. This motivated the effort to find a reliable method to solve these algebraic equations.
A genetic algorithm-based solution method was given in reference [19]. All the direct

methods require a close initial guess.
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3.1.2 Eigenvalue based method to identify the oscillatory stability loading margin

Reference [20] presents an eigenvalue-based iterative algorithm that calculates the
Hopf bifurcation-related segment of the feasibility boundary for a realistically large power

system model. This method needs initial operating points to start the calculation. At the base-

case with parameter value @ © , by solving the equation (3.1.6), the system state variables X

and Y are available, represented by X© and Y. After linearizing the DAE at this operating
point, the corresponding Jacobian matrix Ay is obtained. Then, all the eigenvalues of

matrix Agys can be calculated. The eigenvalue with maximum real part is selected as the

dominant eigenvalue, denoted as A If the real part of the dominant eigenvalue is negative,

the Hopf bifurcation point is not reached.

Real part of dominant eigenvalue

Re(A?)

Re(1")

Re(A?)

Figure 3.2 The secant method to estimate parameter value

In Fig. 3.2, the vertical axis represents the real part of the dominant eigenvalue; the

horizontal axis is the parameter value & . The smooth curve in Fig. 3.2 is the trajectory of the
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real part of the dominant eigenvalue. This trajectory is unknown during the process of Hopf

bifurcation identification. @* is the parameter value where Hopf bifurcation occurs.

With parameter value @ © and the corresponding dominant eigenvalue real part

Re(A” ), point A can be located in Fig. 3.2.

Similarly, with another parameter value a® and the corresponding dominant

eigenvalue AV , point B can be located in Fig. 3.2. The estimation for o* (represented by & (2))

can be obtained by using the secant method.

After calculating the eigenvalue at the new estimated operating point & @ point C

can be obtained.

Each iteration consists of the parameter estimator and the eigenvalue calculation,
also called the eigenvalue corrector. In reference [20], the secant method is used for the

parameter estimator. The algorithm for parameter estimator decides the numbers of iterations.

The conventional eigenvalue algorithm calculates all the eigenvalues. Unfortunately,
this method is very slow. To speed up the process, references [21] and [22] discuss the
robustness and efficiency of existing dominant eigenvalue-computing methods and provide

new alternatives. Since only one eigenvalue is calculated each time, the algorithm is very fast.

Reference [23] applies the power method with bilinear transformation to calculate
the dominant eigenvalue. In reference [21] the power method is implemented and compared
with other dominant eigenvalue-computing algorithms. The author finds that this method
belongs to the linear convergence algorithm. Reference [21] also implemented Newton’s

method, inverse power and Rayleigh quotient iteration, etc. The- various algorithms are
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compared and evaluated with regards to convergence, performance and applicability. The
conclusion of reference [21] points out that linear convergence algorithms, like the power
method with bilinear transformation, are more robust than the higher-order methods.
However, higher-order methods, such as the quadratic and cubic convergence methods, are
much faster. A better result is achieved by combining these two types together. The average

iteration number is reduced to approximately 12.

Reference [24] describes new matrix transformations suited to the efficient
calculation of the dominant eigenvalue of large-scale power system dynamic models. Since
only the most critical eigenvalue is calculated, all the other eigenvalue information is not

provided. The critical eigenvalue takes about 8-10 iterations by different transformations.

Reference [25] describes the algorithm which efficiently computes the dominant
poles of any specified high-order transfer function. It has the numerical properties of global
and ultimately cubic convergence. A numerical example is provided to study low-frequency
oscillations in electrical power systems. The transfer function’s dominant eigenvalue takes

about eleven iterations.

In the large-scale power system simulation, using more than one processor will
obviously speed up the calculation. References [23], [26], and [27] present the application of
parallel computing in eigenvalue calculation. Parallel processing introduces increased
complexity in software and algorithm strategy. Therefore, the task of converting a sequential

algorithm into an efficient parallel procedure is always challenging.

Reference [28] presents two sparsity-based eigenvalue techniques for oscillatory

stability analysis of large-scale power systems.
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3.1.3 The manifold-based method to identify oscillatory stability margin

Reference [29] applies (Apw + Argia) singularity detection to estimate the Hopf
bifurcation. This is also called the manifold-based method. It is based on the following

proposition:

F,+FT F,+G§}

Proposition: Let the maximum eigenvalue of (4, , + A7 )=
p g ( total total ) l: GX + FYT GY + G;'

41, case 1: 4, 2 0is the necessary condition for Hopf bifurcation associated with the power

system DAE model 4, .

Case 2: When 4, is approximate to a normal matrix, 4, =0 becomes the necessary

condition.

From this proposition, the method provides a conservative estimation for the Hopf
bifurcation point. However, it can not provide the damping ratio and other relevant

information related to oscillatory stability.

3.2 Damping ratio margin

Damping margin can be defined as the amount of additional load on a specified
pattern of load increase that would cause the damping ratio reach its minimum limit. In the
oscillatory stability assessment, the damping ratio margin needs to be checked for each
contingency and scenario in order to keep the system far away from the minimum damping

limit.
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In the WSCC, reference [14] recommends the following criteria to determine the

safe operating limits:
The operating point is acceptable from the damping standpoint if;

With path flow increased by the larger of 100 MW or 5 percent, any N-1

contingency will not result in undamped oscillations or instability;

With the path flow increased by the larger of 100 MW or 2 1/2 percent, any N-2

contingency will not result in undamped oscillations or instability.

Damping Ratio

Dy

Parameter o

oy o o5 o o

Figure 3.3 Two cases with different damping ratio margins and the same oscillatory stability

Fig. 3.3 shows two cases with same oscillatory stability margin o*. If the given
minimum damping ratio limit is Dy, the damping margin will be oy and o for case A and
case B, respectively. Using this information, in case B the system can only be operated below

au. In case A, the system is safe when the parameter is less than oz.
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Different utilities may have different minimum damping ratio limits. The eigenvalue
tracking technique can provide the entire relation curve between the parameter value and the

dominant eigenvalue’s damping ratio.

Reference [30] mentions that the direct method could be used for computing the
damping ratio margin. The numerical difficulties inherent in the direct method for the

computation of the stability margin are still present in this case.

In section 4.3, a new approach for calculation of the damping ratio margin is
presented with the indirect method. Actually, the new approach is a by-product of eigenvalue
tracing. If the eigenvalue tracing method is used in the calculation of oscillatory stability

margin, the damping ratio margin can be obtained very quickly.

3.3 Oscillatory stability and damping margin boundaries tracing

In the security assessment, control actions are needed to maintain a given oscillatory
stability and also damping ratio margins. How to find the optimal control parameter value or
strategy becomes very important. With the margin boundary tracing, one can find the
oscillatory stability and damping margins without tracing the entire P-V curve. Reference
[31] presents a framework based on a differential manifold approach that combines
identification and tracing of both saddle node and Hopf bifurcation margin boundaries.
Compared with margin sensitivity, margin boundary tracing provides an actual estimate of
the margin by considering all the nonlinear factors. It can provide more accurate information

than the margin sensitivity.
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Reference [31] doesn’t need to trace entire P-V curve, but it still needs to trace P-V
curve around the margin point. This will result in some extra power flow solutions. In the
proposed method, tracing P-V curve will be totally avoided. Also reference [31] can not trace

damping margin boundaries.

Up to this point, we discussed various existing methods (and their different
drawbacks) that deal with oscillatory stability margin identification and boundary tracing.
Most of the existing literature is concentrated on the identification of oscillatory stability

margin. Only reference [31] makes an attempt to trace the oscillatory stability boundary.
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Chapter 4 Oscillatory stability margin and damping margin
identification

4.1 Oscillatory stability margin identification

To identify the oscillatory stability margin, eigenvalue information of linearized
DAE is needed. One of the major contributions of this thesis is to propose an eigenvalue
tracking method to obtain eigenvalue related information including sensitivities. A derivative
of the eigenvalues which is the by product of this approach can be used to identify the

oscillatory stability margin information.

The eigenvalue-tracking method involves a set of differential equations. The
derivative in the differential equation denotes the differentiation of the eigenvalue and
eigenvector with respect to the system parameter. By integrating in the parameter domain,
the curve of the eigenvalue and eigenvector vs. the parameter value can be obtained. Thus,
the complete information about how the traced eigenvalue approaches and crosses the

Imaginary axis is obtained.

References [32], [33] provide an approach for developing the eigenvalue and

eigenvector differential equation for the parameterized matrix J(¢)). For any eigenvalue 4 of

J(0), and corresponding eigenvector V, the following relation is well known.

Tyt (4.1.1)

{J(a)v = Av

If you differentiate (4.1.1) with respect to ¢, then
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d dv

ﬂv+.f—¢—v—=—~v+l—
daT da a da
v Y
da da
gl &
a a a a
Va7 r av
—Y+ P —— =0
Lda da
Ly gl O,
a a o a
:MdvT (4.1.2)
—v=0
Ldo
av’ 2 dv, r dv
(- v=) —v, =v —
da ' da da

By rearranging the terms in (4.1.2) we get the derivatives of V and 4 with respect

to o as shown in equation (4.1.3)
-0 vy [
V7 ofi|l |o

where a dot denotes differentiation with respect to o

(4.1.3)

Here J depends explicitly on o In power systems, J corresponds to the Jacobian

matrix. However the Jacobian elements in power systems are not explicitly expressed in

terms of o
In the differential and algebraic equations (DAE) model of a power system:

X =F(X.,Y,a)
0=G(X.Y,a)
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X and Y are state and algebraic variable vectors respectively. o is the parameter to
represent load level of the entire system. The Jacobian Matrix of power system DAE model

becomes

| Fx(@) Fy(a)
“ | Gr(@) Gy(a)

Thus 4,, = Fx (@) - F, ()G;' (2)G (@)

When a complex pair of eigenvalues of A,y crosses the imaginary axis, the system

becomes oscillatory unstable.
If A is an eigenvalue of Asys and v denotes the corresponding eigenvector. Then,
A, v=2a
Then (4.1.1) will become

viv=1

{Asys (ax)yv=Av

A and Vv are the eigenvalue and the right eigenvector that we want to trace. To
preserve the sparsity, an extended eigenvector is defined as# =—G, " (@)G (@)v. Then,

Fyw+Fu=24v (4.14-1)
Gyv+Gyu=0 4.14-2)

By substituting #=-G, Gyv from (4.14-2) into (4.14-1), we
get (Fy —F,Gy'Gyv=4v | If we let J(@) = Fy(a)—F,(@)G; (@)Gy (@) , and substitute

J(@) into (4.1.3), we obtain
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_ -1
Al-(F, -F,G;'G,) v]|[»] |“Ux=fGrGy),
T oll = da 4.1.5)
0 .
The part of (4.1.5) can be derived as:
d(FX _FYG;IGX) v
da
_ —1
da
. e d(G;'G
= Xv—FYGY‘GXv—FY%v (4.1.6)
_ . d(G,” P
From #=-G, GV, we can get 4 = —%V—GY 'GyV . So,
d(G,”'G . A
—-(——:la—")v=—u—Gy 'Gyv 4.1.7)
Substitute (4.1.7) into (4.1.6),
d(F, - F,Gy' : o PR
(Fy d; v Or), =F,v—F,G;'Gv+F,(ti+G,"'G,V) (4.1.8)
Substitute (4.1.8) into (4.1.5),
(Al -F, +F,G,'G, W+vi=F,v—F,G,'G,v+F,@i+G,'G,V) (4.1.9-1)
X Y~y ¥x X Y~y >Xx Y Y X
=0 (4.1.9-2)

In order to apply a sparse matrix technique, we can’t let G;' show up in explicit

form. So, we have to let # also enter the state variable. Substituting % =-G,'Gyv into

(4.1.9-1)



29

M—-F YW—-Fiu+vi=Fv+Fu
{( V= Fy oo (4.1.10)

~G =Gyt =G+ Gyu

With (4.1.10) and (4.1.9-2), we can derive the following differéntial equation,

similar to (4.1.3)

M-F, -F, v|[v] |Fw+Fu

-G, -G, 0|u|=|Gywv+Gu 4.1.11)
vl 0 OofA4 0

Since (A(@), v(a),u(@))” is inCxC"xC" , (4.1.11) is a complex differential

equation.

Define

V=V, + jv; Ve,V €R"
u=uy+ ju;; where \4p-4; € R"
A=A+ jA,; Ag,A; €R
With the above notation, equation (4.1.11) can be further extended to the following

real differential equation form.

(A d—F, =41 ~F, 0 vy v, [vg] [Eove+Fu, ]
M A JI-F, 0 —F, v, v, |V F,v, +Fu,
-G, 0 -G, 0 0 0 fug| GXvR+GYuR

0 -G, 0 -G, 0 0 |a| |Gy, +Gu,
vy —v," 0 0 0 0 | 0
v Ve 0 0 0 04| | o |

(4.1.12)
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The above formulation leads to an algorithm for tracing any eigenvalue of a

parameterized matrix. This formulation also retains the sparsity.
Fyy is the element at i row, /™ column in matrix Fy. The Fy can be computed
element by element with (4.1.13). Similarly, Fy , GX and Gy can be obtained.

Oy 0X + OFy ) 0¥ N Fyy)
"DT0X a0 OY da da

(4.1.13)

The above nonlinear differential equation leads to an algorithm for tracing any

eigenvalue and corresponding eigenvector of a parameterized matrix, which retains sparsity.

The state variables of this nonlinear differential equation are [ V&, V1, Y& %1, A, A ]. In the
eigenvalue-tracing method, at each operating point the eigenvalue information is obtained
through numerical integration. The dimension of the linear equation to be solved is

2(n+m+1).

A Real part of dominant eigenvalue

of” o @ d"™ o

Figure 4.1 The tangent information is used for
predicting the next step length
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.. .. da
In order to reduce the number of steps to a minimum, derlvatlved—" can be used to

a
calculate the step length for the integration.
(n+1)
In the Newton method, the @ is predicted by a™? =a®™* - B S (See Fig.
A" ] dal

4.1)

(n+2) _ a {n+1)

The integration step length can be obtained with « . By the eigenvalue

tracking method, the dominant eigenvalue at @™ can be obtained.

(n+1)

With the same initial operating point a™ and @™ | the secant method [20] will

predict the parameter value @' (in Fig. 4.1) as well as the next step length. In Fig. 4.1, the
Newton method estimated parameter value @”*? is closer to @* thana'. Thus, the Newton

method can reduce the number of iteration in the oscillatory stability margin identification.

Eigenvalue Real Part

o (87} o 165]
0 -—

i
'
:
'
A 1
L
i

Fig. 4.2 Eigenvalue real part vs. parameter o

From the above formulation (4.1.12), one can trace all the eigenvalues or any

specified subset or a single eigenvalue of interest. To detect the Hopf bifurcation, we are
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interested in the complex eigenvalue which crosses the imaginary axis first. To identify this

eigenvalue an index is derived.

Fig 4.2 shows a conceptual variation of real parts of three eigenvalues with respect
to parameter o. With the equation (4.1.12), any eigenvalue real part derivative can be
obtained. The dashed lines in Fig.4.2 indicate the slopes at base case parameter value of .
This information is used to define an index to estimate which eigenvalue will cross the

imaginary axis first. This index is given by equation (4.1.13)

e A
Index,,, = A V = i, (4.1.13)
da

If we assume all the eigenvalues at the base case are on the left half of the complex
plane, then a positive index means the corresponding eigenvalue moves towards the
imaginary axis and negative means it moves away from the imaginary axis. The positive
index value indicates, if o value increases by this index value, it will reach the imaginary axis
with the current speed. The negative index value means, if o value decreases by this index
value, it will reach the imaginary axis with the current speed. Thus, a low positive index
value relative to others indicates the corresponding eigenvalue is critical and may be the first

one to cross the imaginary axis.

In Fig.4.2, the eigenvalues corresponding to points A and C have positive index
value, where as point B has a negative index value. Between A and C, C has a less positive
index value. In this particular scenario, the Hopf bifurcation is more likely to be identified by

tracing the real part of eigenvalue C.
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The fourth order integration eigenvalue tracing method to search Hopf bifurcation

includes the following steps:

1) Compute the equilibrium point for the DAE model. Linearize the system and
calculate 4,,, matrix and its eigenvalue by conventional method. Compute the index for all
complex eigenvalues by (4.1.14). Then, rank them by index value. The number one ranked
eigenvalue is the one we will trace. Then let the iteration number 7 =1 and step length at its
maximum limit. Then, enter following loop.

2) Solve linear equation (4.1.12) to compute

- (W o (T - (T ()T m 4 @m
Ki=[v" ,VI(") g Uy l g /1 "] where 7 denotes the iteration number.

3) Let [vR(twpl)T ,VI(Wl)T,uR(WI)T ,uI(Wl)T , AR(tm;vl)’ ﬂy(tmwl)] [ (n)T (n)T (n)T oA (n)T ﬂR(n) ﬂl(n)]T +

h
K1- >0 where 4 is the step length for parameter & .

1
(n+) o h
4) Increase the load level to @ °* =a™+=: then compute the equilibrium

2 b

()
1

(n43)

for

1
(n+)

Solve the linear equation (4.1.12) to compute

1 1 1 1 1
B (n+5)T . (n+E)T . (n+—2-)T . (n+5)T (n+ ) n+=)

T
K2 =[VR ’v] sUp :u1 ,ﬂ,R ﬂ' 2 ] .
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(tenp)T _ (enp)T , (emp)T | (enpD)T ) Genpl) 7 (ienpl)qT L :
Use [ oy o 0 A AT as eigen-information  for

(4.1.12).

5) Let [VR(tempZ)T’vl(templ)T ,uR(temPZ)T u](tempZ)T’ AR(tempZ) , /f{(](temp2) ]T

2

h
W W T T 7 () 3 (T : : .
v T u, 27, 4T + K2~ and solve linear equation (4.1.12) again to
compute

(n+%)T .(n-f%)T . (n+%)T _(n+%)T . (n+%) .+l

K3 = [v, »Vy sUp sU; s Ar A2 ]T

(temp2)T (temp2)T (temp2)T . (temp2)T (temp2) (temp2)T . . .
Use [vi 2V, JUp U, A LA PT as eigen-information.

6) Let [vR(temp3)T , v[(temp3)T , uR(tempS)T , ul(tempB)T , /IR(temp?’) , l](tempé&) ]T

T T T T T
[vR(n) ,vl(n) ’uR(n) ’ul(n) 9;1’R(n)’ll(n)] +K3h.

Let a®P =a™ +h | and compute the equilibrium for load level @™ to get

X(n+1)
Y(n+1)
a(n+])

Solve linear equation (4.1.12) again to compute

. ()T - (DT o (DT - (n+DT 4 (n+l) 4 (n+D)1T
Kd= [vR(n ) ’vl(n ) ,uR(n ) 1, n+ ,AR(n )>ﬂ“1(n )]
temp)T temp3)T (temp3)T . (temp3)T (temp3) 1 (temp3)1T . . . .

[y (P (emp2T q LempT yy (eme DT 2200 2T is used as eigen-information.

7) Integrate the eigenvalue and eigenvector as

[vR(n+1)T, v](n+1)T, uR(n+l)T , u[(n+1)T , Zﬂ(nﬂ)’ /fl](n+1) ]T
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(K1+2xK2+2xK3+K4).h

mT . (T )T mT (n) (m)q7
= [V vy AT + 6

8) If the integrated eigenvalue real part is still negative and the step length is its

maximum limit, then go to step 2). Otherwise, go to step 9).

9) If !/1;2';“) <10 terminate the loop and output.

Otherwise, compute K1 similar in step 2). Then, let the step length

(n+1) (n+1)
o _ M _ A _
h __dil({nfy _—ﬂ:‘(jﬂ) .n=n+1_goto step 3)
e e
do

In some complex situations, the eigenvalue index may not always be able to identify

which eigenvalue to trace. In Section 4.5, a methodology is proposed to handle this situation.

4.2 Simulation result for oscillatory stability margin identification

The algorithm is tested on a New England 39-bus, 10-generator system with two-
axis generator model, IEEE DC-I excitation system and governor model, which can be found
in reference [3][13]. There are 9 state variables for each generator. The total system Jacobian
dimension is 167x167 (89 state variables and 78 algebraic variables). Load consists of 50%
constant power, 30% constant current, and 20% constant impedance. Load on all buses will
increase with the same percentage. The sum of the initial load on all buses is 6141.3MW.

The New England system detailed data can be found in Appendix1.

The total number of eigenvalues at any given operating equilibrium is 89. Out of

which 41 are real and 24 are complex pairs.



36

Imaginary Part

0.25 -0.2 -0.15 -0.1 -0.05 0
Real Part

Figure 4.3 Eigenvalues in complex plane at base case

Fig4.3 shows eigenvalues with a real part greater than -0.3 in the upper-half of the

complex plane for the base case (total load: 6141.3MW). With (4.1.12), each eigenvalue’s

Az and 4, can be calculated. The arrows show the moving direction of each eigenvalue when

parameter « increases. The length of the arrow shows the speed of movement with respect to

oL

*

Table 4.1 Index of all complex eigenvalues in Fig 4.3

Rank No  Symbol Index Value Eigenvalue

1 C 0.49052 -0.12929 + j3.84574
2 D 0.68478 -0.28288 + j6.80807
4 E 1.83944 -0.26939 + j5.97408
6 F 2.26469 -0.20663 + j7.51990
10 G 9.19457 -0.18181 +j6.28264

A -22.5297 -0.05609 £ j0.10762

B -0.89964 -0.10300 + j6.87668

Table 4.1 shows the index value for all the complex eigenvalues in Fig 4.3. The

complex eigenvalues A and B have negative index values. We included these two in the table
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to show the importance of the index. These two eigenvalues are very close to the imaginary
axis compared to any other ranked eigenvalues. However they are moving away from the
imaginary axis for increasing load. By using the index we eliminated these two for further

tracing.

The ranked number one eigenvalue was traced through equation (3.1.2) by fourth
order Runge-Kutta method. To prevent error caused by too large an integration step length,
0.08 is used as the step length maximum limit for parameter c. It represents the entire system
load increase of 8%. Table 4.2 shows each iteration result during the integration. At each
intermediate operating point, a MATLAB provided function is used to obtain the actual

eigenvalue for comparison.

Table 4.2: Hopf bifurcation search for each iteration
Iter No. «avalue load level MW) Integrated 4,

0 0 0 -0.12929
1 0.08 491.3 -0.10017
2 0.16 982.61 -0.03869
3 0.19405 1191.72 7.96E-03
4 0.18916 1161.69 1.95E-04
5 0.18903 1160.89 1.27E-07

In Table4.2, the integrated eigenvalue real part and its actual value are shown. The
corresponding error is listed. In the first two steps, the parameter « is increased by 0.08,
which corresponds to 6141.3MWx8% = 491.3MW. From Table 4.2, we can see that the
accumulated error is well under control. Fig 4.4 shows the eigenvalue’s position for every

step in the complex plane.
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Fig. 4.5 Integrated eigenvalue with total load increase

Figd.5 shows the eigenvalue’s real part with the parameter o. The eigenvalue

position in Steps 4 and 5 are very close.
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With the MATLAB provided eigenvalue calculation method, the exact Hopf
bifurcation appears at a load increase of 18.90605%. This is equal to 6141.3MWx
18.90605% = 1161.078MW load increase. This compares well with our value of

18.90341%%6141.3MW=1160.915MW. The error is 0.163MW.

For each load increase step, we have to solve 2(m+n)+2 dimension linear equation

four times.

4.3 Damping margin identification

A Damping Ratio

512
da

Slope is

Damping Margin

Do |------

o
Y

Figure 4.6 The tangent information is used for
searching damping margin

A
The damping ratio is defined as D= —cos[arctan(zl—)] 4.3.1)

R

Since /iR and 4, are available, the damping ratio’s derivative to parameter o can be

derived and is given by (4.3.2)
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D 5 On g, Dy
— = sin(arctan(=%)) £ da
da Ag 4G +2%)

The damping index can be obtained by

I ndex damping =

_D-D,
Vi

Following a similar approach to Hopf identification, the damping ratio of any

searching a damping margin.

The slope of the damping ratio curve in Fig 4.6 can be used to predict a parameter

value in damping margin identification.

Simulation result for damping margin identification

Similar to oscillatory stability margin identification, the damping margin

Table 4.3: Damping ratio search for each iteration

(4.3.2)

eigenvalue can be traced with a given damping threshold D,. Fig 4.6 shows the process of

identification is also obtained. Table 4.3 shows the simulation results for a damping ratio

limit (Do) of 1%. Here the same ranked number one eigenvalue damping ratio is traced.

Iter No. «value Total Load Increase(MW) Integrated Damping
0 0 0 0.0336
1 0.08 491.30 0.0272
2 0.16 982.61 0.0111
3 0.16358 1004.57 9.97 E-03
4 0.16350 1004.09 9.99999E-03

Figure 4.7 shows the each iteration’s load increase and damping ratio.
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If we compare the oscillatory stability margin with the damping margin
1004.086MW, there is a 156.992MW (1161.078MW -1004.086MW) difference. When we

use Dy=0%, the corresponding damping margin becomes the oscillatory stability margin.
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Fig. 4.7 Damping ratio vs. entire system load increase

4.5 Discussion of the practical aspects of the proposed algorithm

4.5.1  Consideration for cases if the eigenvalue index doesn’t work

In the previous section we calculated all the eigenvalues and their indices to trace
any specific eigenvalue of interest. In general we do not need to calculate all the eigenvalues.
In the previous example the number 1 ranked eigenvalue at the base case is finally crossing
the imaginary axis first. However this may not always be true for all operating conditions.

Flow chart in Fig. 4.8 describes the steps involved for any general starting point.

First we calculate a subset of eigenvalues with a maximum real part for the base

case. As discussed in the introduction, powerful methods are proposed in the literature [21],
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[22], [24], [25], [28], [34] to calculate these dominant eigenvalues. Next, the indices for this
subset of eigenvalues are calculated. The eigenvalue with minimum positive index in this

subset will be traced. During every step of load increase, the eigenvalue moving direction is

dA
checked. If d—;becomes negative, it indicates that the eigenvalue is moving towards the

left hand side in the complex plane. We need to stop tracing this eigenvalue. At this load,
calculate another subset of eigenvalues with the maximum real part. Pick an eigenvalue with

minimum positive index and trace this new eigenvalue.

When the traced eigenvalue reaches the imaginary axis, it satisfies the minimum
tolerance criteria. At this operating point we have to check if some other eigenvalues crossed
the imaginary axis already. For this we have to find an eigenvalue with maximum real part. If
this eigenvalue is the same as the one we traced before, we find the Hopf and stop.
Otherwise, trace the new eigenvalue with the maximum real part backward, until it comes
back to the imaginary axis. Our simulation experiments indicated, in a stressed system, the
eigenvalue with a minimum positive index will cross the imaginary axis in the first attempt.
So, we don’t have to waste time calculating an eigenvalue with a maximum real part multiple
times. Even if the operating point is far away from the Hopf point, this method took less

number of maximum real part calculation updates as described below.

We simulated an operating point which is far away from the Hopf point. In the
previous example the total load of the base case is reduced by 50%. At this reduced load, an
eigenvalue with the maximum real part is calculated. This eigenvalue turns out to be the

same eigenvalue A as in Fig.4.3. However the index for this eigenvalue is negative.



Calculate subset of eigenvalues with maximum real
part, find index for each eigenvalue in this subset.
Select the eigenvalue with least index

.
-

Y

Increase the load and trace the
eigenvalue A with least index

Y

Ag | < ¢(tolerance)?

.

Calculate an eigenvalue A' with maximum real part

Y
A'e | < €(tolerance)? e

>| No
Y
Decrease the load and trace this eigenvalue

No

R A'p I < ¢(tolerance)?

Yes

i
Output

Fig 4.8 Flow chart for oscillatory stability margin estimation
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The next eigenvalue with maximum real part is B. At this reduced load, B has a
positive index. We traced this B for the Hopf identification. Before it reaches the imaginary
axis the index became negative for an increase of 80% load from the new base case. At this
load (5527.17MW) an eigenvalue with a maximum real part is calculated again. This time it
picked up the eigenvalue C (which is the one that is actually crossing the imaginary axis
first). In the previous case this eigenvalue was also selected for final tracing at the base load

level of 6141.3MW. This implies the procedure proposed in Fig.4.8 guarantees the final

identification of Hopf.

Imaginary Part

0 i i &[ i i
0.2 -0.15 -0.1 -0.05 0 0.05
Real Part

Figure 4.9 Eigenvalue A, B & C trajectories in complex plane for

The trajectories of eigenvalues A, B and C (the notation is same as in Fig. 4.1) for
the new base case are shown in Fig 4.9. Part of Fig 4.9 is enlarged in Fig. 4.10, to show the
details of the eigenvalue B’s locus. The star represents the eigenvalue position at the new

base value. Circles indicate the integration steps. The load increase step limit is the same as
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the one used in Table 4.2. The triangle represents the eigenvalue’s position at the fifth load

increase step.

7.05

o
©
a

Imaginary Part

6.9

6.85|

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09
Real Part

Figure 4.10 Eigenvalue B trajectory in complex plane

Since eigenvalue A and B both have negative index value (at the S5th step),
eigenvalue C becomes the one we need to trace, according to the flow chart. From Fig 4.9

and our simulation result in Table 4.2, eigenvalue C will move toward the right and cross the

imaginary axis.

To make sure the eigenvalue C crosses the imaginary axis first, we applied the
maximum real part test at this load level where C crosses. We found out there is no other

eigenvalue with real part greater than C. According to Figure 4.8, if there is another
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eigenvalue which already crossed the imaginary axis before C, we have to apply backward

tracing on this eigenvalue.

Start

S

Y

Calculate subset of eigenvalues with minimum damping
ratios. Find the eigenvalue with least damping index.

Increase the load and trace the eigenvalue 4 with
least damping index by one step

| D-Da | < e(tolerance)?

No

No

A

Ea Find the eigenvalue A * with minimum damping ratio

Check for eigenvalues A * if ] D*-Dy | <
€é(tolerance)?

No

Trace eigenvalue A * backward

Output <

Fig 4.11 Flow chart for damping margin estimation
For the damping margin identification, we developed a very similar flow chart in
Fig 4.11. But we need to compute the subset of eigenvalues with a minimum damping ratio at

the beginning for the index comparison; compute a single eigenvalue with minimum
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damping at last to verify the traced eigenvalue is the correct one. If the traced eigenvalue

turns back, we need to start this process from this load level again.

4.5.2 Consideration of Discrete Events

When the load level and transfer level increase in transmission systems, some
discrete events could happen, like capacitor switching, transformer tap changing, hitting
reactive power generation limits, etc. With some slight modifications the eigenvalue tracing

can still function without any problems.

A Voltage

Ci = Ci0+CSwitching

Vthreshold

Y

Figure 4.12 P-V curves due to capacitor switching

In the Figure 4.12, we demonstrate the capacitor switching action during the tracing.
Here the horizontal axis is the « value; vertical axis represents voltage. When the load or

power transfer increases with ¢, voltage will drop. When the voltage drops to the threshold
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value Viresnoia, capacitor Csyircning Will be switched in at operating point B. Voltage will be

raised to point C.

In the eigenvalue tracing process, the switching action is represented by equation

(4.5.3). Before switching 7 is zero.

{X =F(X,Y,a,7); 4.5.1)

0=GX,Y,a,y);

P,=(1+ KLPia)I)L(;;

Q=0+ KLQia)QZ'; 4.5.2)
B, =(1+ K, @)

C; =Ci +7 KiCoivching 4.5.3)

When we trace the operating point from A to E in the above Figure 4.12, the ¥ stays

at zero. Real and reactive load and generation keep increasing according to formula (4.5.2).

When we reach point B and find low voltage and the need for a capacitor to be
switched in, we trace the eigenvalue from B to C. In this new tracing process, we let « stop
increasing, and treat it as a constant value. ¥ will be treated as a parameter to trace the
eigenvalue. i.e., in formula (4.5.1), a becomes a constant number. During the new tracing,
all equations well be modified correspondingly (Now the all the derivatives are with respect

to 7, not to o)

After C; reachs Ciot+Cswirching » 1.€., point C 1s obtained, ¥ will become a constant
value again. C; will be constant at Cjp+Csirching. During tracing from C to D, « becomes

parameter again.
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Figure 4.13 shows the eigenvalue’s trajectory during this tracing process.

C; = Cig+Cswirching 1 Im

Re

Figure 4.13 Traced eigenvalue trajectories with capacitor switching action

Similar reasoning can be applied for the other devices hitting the limit during the
tracing. No eigenvalue computing is needed during integration from operating point A to D,

and no accuracy is sacrificed.

4.6 Computational comparison

The following sections provide detailed computational comparisons with the secant

method

4.6.1  Step length selection and accuracy

We simulated our case with second and fourth order integration methods with
different step length maximum limits. We also tested the secant method with different initial
step lengths. The correct oscillatory stability margin for the test case is 18.90605% load
increase (@ =0.1890605), which is 1161.077MW. (6141.3MW is the total load in the base

case.) Tables 4.4, 4.5 and 4.6 show the simulation result. Fig.4.14 summarizes these results.



50

The error in percentage is the percentage to oscillatory stability margin, (which is

1161.077MW).

In the secant method, to predict the step length, it needs two power flow solutions at
different load levels and the corresponding eigenvalue. One power flow is chosen at the base
case, the distance between the second operating point load level and the base case is called
“Initial step length”. This step length has to be designated by users. After that, every step

-‘length will be predicted by the secant method. In Table 4.6, different initial step lengths were
simulated. One can notice that the secant method can converge faster with an initial step
length of 0.18 or 0.20 (This is due to the final answer which is 0.189 and the step length
chosen is close to this value). The best case is when the initial step length is the final answer,
where only one step is needed. If the user is not so lucky to jump close to the final answer in
the first step, it takes an average of seven or eight steps to find the oscillatory stability

margin.

From Table 1, when the step length liﬁit is larger than 0.10, the error from the
second order integration method becomes unacceptable. But the fourth order integration
method result from Table 4.5 shows the error is pretty small even with a step length of 0.2.
Load increase of 20% of the base case total load is more than enough in a practical system. In
a stressed system, a step length more than 10% will require intermediate operating points to
make the power flow converged, i.c. more than one power flow solution is needed for any
method. If only considering a step length below or equal to 0.10, both the second and fourth

order integration methods would find the final answer in a fewer number of steps. The
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second order method could require less power flow solutions than the secant method with

acceptable error.

It may appear that the secant method can take advantage of choosing a longer step
length. To show how much benefit can be obtained for the secant method, we tested an initial
step length of 0.40 load increase. As the result indicates, we didn’t see any efficiency
enhancement for the secant method from the large initial step length. The nonlinear

characteristics of the system make the large step lengths perform poorly in the predictor.

For cases with a light base case load level, where an initial large step length can
save time, we can use a hybrid method to start the search with the exact same way in the
secant method. Once we find it’s close to the final answer, then, we switch to our integration
method, since the tangent predictor is always faster to converge in local search than the

secant method.

We noticed that the fourth order integration method needs two power flow solutions
for each step, one more than in the secant method, but, the fourth order integration method
can find margin point with fewer steps to compensate for this disadvantage. If we don’t
consider the initial operating point calculation, for a 0.10 step length, the fourth order
integration method needs four steps to find the final answer ( so, it needs eight power flow
solutions). With the 0.10 initial step length, the secant method needs eight steps, which
requires eight power flow solutions also. The numbers of power flow solutions are the same
in both methods. With 0.10 step length, the second order method needs only 4 steps, which

require only 4 power flow solutions.
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Table 4.4 Second order integration method simulation result

Step Length Steps Error Error

Limit (Agr) | Needed |  (MW) (%)
0.04 7 1.307 0.11
0.05 6 2.446 0.21
0.06 7 7.065 0.61
0.07 6 7.374 0.64
0.08 6 15.84 1.36
0.09 7 20.69 1.78
0.1 4 19.51 1.68
0.11 5 32.35 2.79
0.12 5 53.15 4.58
0.13 6 85.42 7.36
0.14 6 130.7 11.25

Table 4.5 Fourth order integration method simulation result

Step Length Steps Error Error

Limit (Aer) | Needed | (MW) (%)
0.04 7 0.176 0.015
0.06 5 0.155 0.013
0.08 5 0.162 0.014
0.10 4 0.025 0.002
0.12 4 0.079 0.007
0.14 4 0.342 0.029
0.16 4 0.764 0.066
0.18 3 1.445 0.124

0.1890605 1 0 0

0.20 3 2.722 0.234
0.22 4 4.949 0.426

Table 4.6 Secant method simulation result

Initial Step Length | 0.04 | 0.06 [ 0.08 | 0.10 | 0.12 | 0.14 | 0.16 { 0.18 | 0.1890605

Steps Needed 9 9 8 8 7 7 7 6 1

Initial Step Length | 0.22 1024 1 0.26| 0.3 §{ 0.3 | 0.32|0.34 | 0.36 | 0.38

Steps Needed 7 7 7 7 8 8 8 8 9
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Figure 4.14. Steps needed for integration methods vs different initial step length
for secant method

4.6.2 Estimation of computational cost

For a full matrix with dimension N, LU factorization needs N’ times multiplication-

additions. The forward and backward substitution costs N’ times multiplication-additions. In
this situation, the fourth order integration method needs four LU factorizations; a single

eigenvalue with a maximum real part needs only one LU factorization.

However in large scale power system, a Jacobian matrix is always sparse. The non-
zero element for every column is influenced more by network topology and dynamic model

than by system size. Thus, with an increase in system dimension, the number of non-zero
elements will increase approximately by V , not with N 2
According to William Tinney’s paper [35], if the numbers of non-zero elements for

each row doesn’t increase with matrix dimension, the CPU cost will increase with N, not &V

(or N°) for both LU factorization and forward-backward substitution.
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In our New England test case, according to Tinney’s paper, for our system
dimension of 2(m+n+1) = 336 linear equations, LU factorization needs 3787 times of
multiplication-additions, forward and backward substitution needs 2087 times of
multiplication-additions. For signal eigenvalue computation, forward and backward

substitution needs 1838 times of multiplication-additions.

Table 4.7: Computing cost comparison between different methods
Note: For second order method, each step needs to solve two linear equations and one power flow.

Number Power flow Time for the computation of eigenvalue
of Steps | solutions needed | (unit is number of multiplication-additions )
Secant method 7 7x1=7 7x20x1838 = 257,320
2nd integration 4 4x1=4 4x2x(3787+2087) = 46,992
4th integration 4 4x2=8 4x4x(3787+2087) = 93,984

From the above table 4.7, we can see how fast the second order method can be on

both major parts of the calculation.

To estimate the computing cost for power flow, we assumed a Newton-Raphson
method can converge within four iterations. Each iteration in a Newton-Raphson method
consists of three major parts of computation: Mismatch calculation, calculation of a Jacobian

matrix and solving of the linear equation.

Computing cost for solving linear equations: For the example above we need to
solve 2(m+n+1) linear equations (336 equations for the New England test systems) . The
total cost is 378742087 = 5874 = 17.5x336 = 17.5x2(m+n+1). For DAE model with
dimension (m+n), we assume that solving linear equation would cost 17.5(m+n) times of

multiplication -additions
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The other two parts of computing (calculating mismatch and Jacobian matrix) cost
depends on the dynamic model used for DAE. If we assume these two parts cost as much as
solving a linear equation, one power flow with four iterations will cost

4x[17.5(m+n)+17.5(m+n)]=140(m +n) = 23,380 times of multiplication - additions.

We can get the following total computing cost estimation.

Table 4.8: Total computing cost comparison between different methods
Power flow Time for Eigenvalue | Total Computing
Number | go1utions Needed Information Cost
of Steps — —— —
*unit is number of multiplication - additions
7x23,380 _
Secant method 7 ~163.660 7x20x1838=257,320 420,980

2nd order 4x23.380 = 4x2x(3787+2087) =

intogration 4 93,520 46,992 140,512

4th order 4x2x23,380=187, | 4x4x(3787+2087)=

integration 4 040 93,084 281,024

In Table 4.8, the second order method is 420,980/140,512 =3.0 times faster than the
secant method. The fourth order method is 420,980/281,024 =1.5 times faster. This speed

comparison depends on the number of iterations needed to get a power flow solution.

4.6.3 Robustness of the algorithms

In the above discussion we assumed on an average it takes 20 iterations to calculate
a single eigenvalue. However it may take more than 20 iterations for large systems. To verify
the robustness of the eigenvalue calculation for a large systems we randomly generated test
systems. We calculated a single eigenvalue with a maximum real part of these test systems
by MATLAB provided function “eigs.m”. We found on an average, the number of iterations

for these test matrixes will increase with increasing the test matrix dimension. The large
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matrixes need much more than 20 times of iteration. The probability of this algorithm

converging also increases with increasing the test matrix dimension.

Randomly generated test systems:

To make our randomly generated matrix more realistic, these matrixes have to be
sparse. The non-zero elements on each row won’t increase when the system size is
increasing. Thus, the diagonal matrix is selected. Since, our matrix has to be a real matrix.
We choose a two by two block on diagonal to represent a pair of conjugate complex

eigenvalues.

If we have a complex eigenvaluea + j8 , where 8 # 0, then we can find a two by two

a
real matrix [ F. g} whose complex eigenvalues area £ jf3 .

If we have two pairs of complex eigenvalues @, * jB, anda, £ jB, and three single
real eigenvalues@,,@, and @5, we can construct the following sparse real matrix with all of

these eigenvalues.

@ B 0 0 0 0 0
~B a O 0 0 0 0
0 0 a B 0 0 0
0 0 -8, a 0 0 O
0 0 0 0 a 0 O
0 0 0 0 0 a O
0 0 0 0 0 0 a
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In the test case, 41 real eigenvalues out of a total of 89 (46%) are real. The rest of
the 54% eigenvalues are complex. All the real eigenvalues’ mean is -11.2608, the standard
deviation is 21.5945. All the complex eigenvalues’ imaginary part mean is 4.2770, the
standard deviation is 3.7219. The complex eigenvalues’ real part mean is -2.0660, and the

standard deviation is 3.7385

With this method, we randomly produced real eigenvalues and complex eigenvalues
with the same statistical characteristics as above, and built matrices with different

dimensions.
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Figure 4.15. Percentage of unsolved cases with different size matrices

MATLAB single eigenvalue function “eigs.m” is applied to calculate a single
eigenvalue with the maximum real part. The MATLAB default maximum iteration threshold
is 300.We chose six different matrix dimensions: 400, 800, 1600, 3200, 6400 and 12800. For
every dimension, 100 matrixes are randomly produced with the above statistical data. For a

12800 dimension matrix, 21 out of 100 cases can not converge within an iteration limit
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(which is 300 iterations in our test). It appears, for large systems, conventional methods may

face convergence problems.

In our New England test system Jacobian matrix computation, only three out of one

hundred cases failed to converge within the iteration limit.

Figure 4.15 shows the percentage of unsolved cases for matrix dimensions from 400
to 12800. For all converged cases, we calculated the average number of iterations for

matrices with different sizes. Results are shown in Figure 4.16.
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Figure 4.16. Average number of iterations needed to converge with different
size matrices

The data for these two figures is given in Table 4.9.
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Table 4.9: Numbers of iteration for different size matrixes

Matrix Unsolved cases per 100 Average number of iterations for
size tests converged cases
400 13 65.20
800 16 69.87
1600 , 10 76.70
3200 17 80.33
6400 13 82.44
12800 21 95.29

These results indicate the potential disadvantage of the conventional secant method.
In the New England 39-bus test case, we assumed 20 iterations to get a single eigenvalue. If
the comparison is based on the iteration numbers in Table 4.9, the proposed method in this

thesis would be much faster than the comparison result in the section 4.6.2.
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Chapter 5 Oscillatory stability and damping ratio margin boundary
tracing

5.1  Oscillatory stability margin boundary tracing

In the last chapter, an efficient eigenvalue-tracing algorithm is described for a fixed
set of control parameters. When these control parameters change, the stability margin related
to the Hopf bifurcation changes as well. The oscillatory stability margin boundary is confined
by the Hopf bifurcation with a different set of control parameters. This boundary could be
traced by augmenting the power system equilibrium with a characterization equation that
defines the Hopf boundary. This characterization equation, together with the system

equilibrium, defines the margin boundary.

In grid security assessment, control actions are needed to maintain a given
oscillatory stability and damping margins, i.e., one can maximize the stability margin or
damping margin by adjusting control parameters. The algorithm presented in this chapter can
estimate the change in the oscillatory stability margin for any given large change in system
parameters. Through nonlinear margin boundary tracing, one can easily estimate the margin
for any given variation in the control parameter value. Discrete events, like a transmission
line tripping, also can be parameterized as a continuous event, such that, one can apply this
margin boundary tracing method in contingency analysis. This can reduce the computational

time required for a large scale system contingency analysis.
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Compared with margin sensitivity, margin boundary tracing provides an actual
value of the margin by considering all the nonlinear factors. It can provide more accurate

information than the margin sensitivity.

The oscillatory stability margin boundary can be traced by augmenting the power
system equilibrium with a characterization equation. This characterization equation, together

with the system equilibrium, defines the margin boundary.

In chapter 3 the set of equations (3.1.4) (3.1.5) and (3.1.6) define the Hopf
boundary. Here (5.1.1) (equilibrium conditions) corresponds to (3.1.6) where an additional
control parameter 3 is explicitly represented. In chapter 4, § is fixed and « is varied. Here

both acand (3 are varied.

{0=F(X,Y,a,ﬂ) (5.1.1)

0=G(X,Y,a,p)

The conditions related to (3.1.4) and (3.1.5) are combined to define characterization

equations (5.1.2) which together with (5.1.1) defines oscillatory stability boundary.

(Fyvy +Fyup+sv, =0
Gyvp +Gyup, =0
Fov, +Fou,—svy, =0

C(X’Y’VR’uR,v],u],a’ﬂ,S)=<GXVI+G}’u1=O

(5.1.2)

Ve -1=0

Viey = 0

As described in chapter 2 (section 2.2) the load and the control parameter variation

are represented as:
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P, =P°(1+aK,,);
Load: Lot f ) (5.1.3)
0., =0, (1+aKiQL);

Control: U,=U,+ PKC, (5.14)

Where U, indicates the initial configuration of controli. In the control parameter
space U, = (V,eﬁ,Km.,---) (i=1, ..., k, where k denotes the total number of possible controls

in the system.), all the control parameters are changed with the parameter 3 change.

Different combinations of control actions can be achieved by assigning different ratio
values to KC;. This parameterization leads to two parameter variations: o characterizing
system loading conditions with respect to a specified loading scenario, and (8 characterizing

control parameters with respect to a specified control scenario

and C(X,Y,vp,ug,v,,u;,a,B,5)=0 has 3(n+m)+2 equations

0=F(X.,Y,a,pB)
0=G(X,Y,a,p)

and 3(n+tm)+3 variables. With the pre-defined control scenario (5.1.4) the oscillatory

stability margin can be identified with any given ( value.

This entire margin boundary tracing process begins with the base-case Hopf
bifurcation point, which is detected by the Hopf bifurcation identification method described

in Chapter 4.

Fig. 5.1 illustrated this process. The point CO is the initial operating point. With the
method introduced in Chapter 4, one can identify oscillatory stability margin point A0, i.e.,
the first pair of conjugate complex eigenvalues is identified to cross the imaginary axis.

During this process, the parameter (3 keeps its value at (3.
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A
Damping margin boundary with Do= 1%

Oscillatory stability margin boundary
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S
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Figure 5.1 Illustration of the voltage stability, oscillatory stability and damping margin

boundaries and their tracing process

Now, the margin boundary tracing process can start. All the information at operating

point AO should satisfy conditions (5.1.1) and (5.1.2).

5.1.1Augmentation for boundary tracing

Combining (5.1.1) with (5.1.2) results in the following set of equations that define
the Hopf boundary [36].
F(X,Y,a,f)

B(X,Y,vp,up,v,,u,,a,p,s)= G(X,Y,a,p) =0 (5.1.5)
C(X,Y,vg,up,v, u,,a, B3,5)
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In (5.1.5), there are 3(m+n)+3 unknown variables and 3(m+n)+2 equations. To get a
specific boundary point, one has to assign a value to one of the variables by the following

equation:

[XT,Y" vy, ug,v] ,u; e, B,5]e, =11 =0 where k denotes the index of the specified
variable and 77 is its value.

The total augmented equations for margin boundary tracing are

B‘X’Y’ b 2 2 ﬂa, k)
- 0=H(X,Y,VR,uR,vl,ul,a’ﬂ’s)=|: , T( . VRTMR TVI uTI ﬂ S) :|:>
[X Y vy uy v, u, oL B85, —n
FX,Y,a, )
G(X,Yaa,ﬂ) (516)
c(X,Y, vy, up,v,,u,,a,B,s)

r T T T T T
[X :Y SVp SUp LV, U ,a’ﬂ’s v — 7

0=H(X,Y,vy,uy,v,,u;,a,B,8)=

Where €; is the vector with all zero elements, except the k™ element equal to one.

[oF OF OF OF OF OF OF OF OF]
oX OY v, Ou, v, Ou, Oa Of &s
S BH(X,Y,ve g, vy U, @, By5) 9G 9G G oG °G 9G oG oG oG
7 =|aX Y v, Ou, ou, oa Of os
(K Yovpupviunefis) o0 ac aC aC aC aC aC aC oC

X oY ov, ou, ov, ou, Oa OB 0s

(.1.7)

Where =X, 7,8, T va, sttn . Vi iy 5@ es BoresS e i @0 s ODtained from the

pre >~ pre ’vare >uRpre >v1prz 7u1pre ’apre’

tangent vector calculated in the boundary predictor.
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In order to get the oscillatory stability margin with 8 value 3;, which is the point Al

in Fig. 5.1, one can apply the predictor and corrector strategy. The margin boundary tangent

which is shown in the Fig. 5.1 is denoted as[dX”,dY”,dv, ,du," ,dv,",du,” ,a, B,s]", and

can be obtained by solving

OH(X,Y,vp,uz,v,,u,,a, B,s)
(X, Y, vy, ug, v, u;,0, B,5)

(5.1.8)

== ]

H
o

After solving (5.1.8) for a tangent vector, the predicted values of the unknown

variables can be obtained from (5.1.9). Where 6 is the step length.

Koo | Tx T Tax ]
Yl”e Y dYy
vR pre VR dvR
uRpre uR duR
Vige [V | +6|dV,
ulpre uI dul

a da
apre

B ap
ﬁpre

s ds
_spre a - - - -

(5.1.9)
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This predicted value is represented as point A1’ in Fig 5.1, and it can be used to as
an initial guess to converge upon the stability boundary by solving the non-linear algebraic

equations (5.1.6) with the Newton-Raphson method.

5.1.3Boundary cbrrector

The Newton-Raphson method can be employed to do the boundary correction as

-X"new —Xj

Y Y

Vr Vr

Up Up '
cH(X,Y

v] —_ V, _( (Xa ,VkauRavl:ul,aaﬁas))-lH(X’Y’vR,uR’vI’uI’a’ﬂ,s) (5.1.10)
0. O SPNPRININN N

u, u,

a a

B B

Iterate until the mismatch is less than the tolerance. Finally one can obtain the

solution which is the Hopf  bifurcation  point corresponding to
T T T T
lXT,YT,vR g SV, U, ,a,,B,sJek=77.
In the corrector, there are two ways to converge to the boundary curve. Fig. 5.2

shows these two strategies.

If one wants to trace the margin boundary curve with several specific 8 value points,

H

the step length 6 in (5.1.9) needs to be chosen carefully by 6 = ﬂ—’;‘ilg——' , where df; is the

solution of (5.1.8). S, is the value for current available margin point on boundary. f,,, is the

specific value for the next margin boundary point which is unknown. With this step length,
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the predicted 8 value will be exactly S, . By solving the non-linear algebraic equation

(5.1.6), one can get the margin point with = f,,, . In this case, the index £ in e, should be
3(ntm)+2.

A Voltage

Oscillatory stability margin boundary Corrector
B,

Predictor

B,

.
>

Figure 5.2 Illustration of the corrector convergence strategies

Thus, the margin point for a given 3 value can be traced. This corrector is shown in

Fig 5.2 (from the point A1’ to the point Al).

There is another way to trace the margin boundary curve without controlling the
intermediate  point’s (#  value.  After calculating the tangent  vector
[dXT,dY" dv," ,du,” ,dv," ,du,” o, B,5]", check the element with maximum magnitude.

For example, let d¥; be the maximum magnitude element (V; is an element of Y, which is the

i™ bus voltage magnitude). In the corrector, (5.1.6) will be modified to
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0=FX.,Y,a,p);
0=0G(X,Y,a, p);
C(X,Y,vg,ug, v, u,,a, B,5)=0;
V_y predicted _ 0;

H 4

(5.1.11)

When solving this algebraic equation with the Newton-Raphson method, the index k&

in (5.1.6) becomes the index of @V; in vector [dX”,dY” ,dv,” ,du, ,dv," ,du,” ,a, B,s]" .
This process is illustrated in Fig. 5.2 (From point A1’ to point A1*).

The only drawback of this corrector is that the 8 value is not totally controllable.
The advantage of this approach is it is numerically stable. The Newton-Raphson method will
converge faster compared to the previous selection of 3. For the sample system tested in this
thesis both methods are equally good. In the event that one encounters divergence problems
with the first approach, the second approach for the corrector iteration can be applied to

overcome this obstacle.
The following steps are involved in oscillatory stability margin boundary tracing:

1) with the initial state, which is the solution of (5.1.1) and (5.1.2), where 8 = £,

solve the (5.1.8) to get the tangent of margin boundary.
2) with (5.1.9), predict the margin boundary solution.
3) solve (5.1.10) for the Newton-Raphson algorithm.

4) If B reaches the target value or any other stopping criteria, stop the tracing

process. Otherwise, return to step 2).
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The result of tracing is a set of Hopf bifurcation points for various values of 8. Each
(3 value can be related to the amount of corresponding control variable. The distance between

two bifurcation points depends on the step length 6 in margin boundary tracing.

The sensitivity information is available as a by-product, like X | ¥ da dv du

ap’ dpg’ ap’ dp’ dp’

ds

dp

5.2 Damping ratio margin boundary tracing

The same procedure can be employed to trace the damping ratio margin boundary.
Here, for a given damping ratio &, the real part of the dominant eigenvalue should be
r =s-cot(cos™'(&,)) » Where s is the imaginary part of dominant eigenvalue. So the cut function

of the damping margin boundary becomes

(Fou, +F,vy +su, +s-cot(cos™ (&), =0
Fyu, +F,v, —su, +s-cot(cos™ (&,))u, =0
Gyup +Gyvp =0

Gyu, +Gyv, =0

Upi —1=0

C(X,Y,a,B,8,Vg,V,Up ;) =1

(U1 —1=0
(5.2.1)

Similar procedures described for oscillatory stability margin boundary can be
applied to obtain a damping ratio margin boundary. The only difference is “C” which is

replaced with (5.2.1).
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In Fig. 5.1, the boundary tracing starts from point BO, this is obtained by the
damping ratio margin identification method from Chapter 4. With the predictor and the

corrector, the boundary curve can be obtained.

5.3 Simulation results

5.3.1  Oscillatory stability margin boundary tracing

The algorithm was tested on a New England 39-bus system described in Chapter 4.
Load consists of 50% constant power, 30% constant current and 20% constant impedance.
Load on all buses will increase by the same percentage. Four cases are studied with different
control scenarios. For all these cases, the starting conditions correspond to the margin point

identified in chapter 4, where the oscillatory instability occurs at a load increase of 1161MW.

Case 1:

In this case, parameters Ka in the excitation system of all generators are decreased

to 50% of their initial values.

The vertical axis in Fig 5.3 shows the oscillatory stability margin value. The
horizontal axis shows the Ka value at all generators as a percentage of their original values.
When the values of Ka are decreased by around 22%, the entire system oscillatory stability
margin reaches its maximum value of 1230MW. The original Ka values have the margin of
1160MW. The margin is increased by 70MW. From the margin boundary tracing, the control
parameter perturbation tolerance also can be obtained. For example, if all generators’ Ka
values are set to be 80% of original value, the margin can be guaranteed larger than 1200MW

with 10 percent perturbation.
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Figure5.3 Oscillatory stability margin boundary with decrease of Ka at all generators
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Figure 5.4 Oscillatory stability margins with Ka of generator at Bus #30
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Only the Ka of the generator at Bus #30 is reduced. Fig5.4 shows the margin
change. Entire system load margin reaches its maximum value of 1232MW when the Ka
value of the generator at bus#30 decreases from 20 to 4. The load margin is improved by

approximately 70MW.

Case 3:

Three generators are chosen for adjusting the Ka value. The control scenario is:
Ka,, = Ka{) (1-0.95p);
Ka, = Ka{Y(1+8.08);
Ka,, = Ka{) (1-0.5B);

Fig5.5 shows the variation of the margin. When the £ value is 0.8, the oscillatory

stability margin becomes 1357MW. The margin is improved by 197MW.
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Case 4:

Oscillatory stability margin (MW)

| | | | 1 I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B (5=0 line is in and B=1 line is out)

Figure 5.6 Oscillatory stability margin boundary with outage of line 3-18

This case corresponds to line outage. Here 8 =0 corresponds to the line is in and

=] indicates the line is out.

Fig 5.6 shows the system load margin for post-contingency. The margin after line 3-
18 out is 1013MW. In Fig5.6, the boundary can be traced in only two steps, which is denoted
by squares. The total cost involved: solving of (5.1.1) and (5.1.2) twice by the Newton-
Raphson method. There is no eigenvalue computing involved. Without the margin boundary
tracing, a P-V curve has to be traced without this transmission line, in order to obtain the

oscillatory stability margin for post-contingency.
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5.3.2 Damping ratio margin boundary tracing
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50 55 60 65 70 75 80 85 90 95 100
Ka at All Generators Reduced (%)

Figure 5.7 Oscillatory stability margin and damping margin with decrease of Ka
at f all the generators

In Fig 5.7, the four curves are the oscillatory stability margin boundary (D = 0), and
the damping margin boundaries for D=0.5%, 1.0%, and 1.5%, from the top to the bottom of

the figure.

Fig. 5.8 shows a three dimensional view of Fig.5.7. The D threshold values are
changed in increments from zero to 1.5% with 0.1% increment intervals. The vertical axis
denotes the entire system damping margin. The same color represents similar margin values.

All the points under the surface are safe.



75

Entire System Damping Margin
)
(4]
(=]
|

10007 SN s
950 —
~~~~~~~~~~~~~~~~~~~~~~~ 0

SO~ @~ e T :

- 05 o\
850 - .

50 - 60 >
oo 07580 85 e g5 g0 15.c0%
a of All Generator in Percentage of Original Valug ~ 03@

Figure5.8 damping margin surface with change of Ka at all generators

If we want to achieve the maximum oscillatory margin (or damping margin with
D=0), according to this Ka change scenario, all generators Ka should be decreased to around
78% of their original value. If one wants to obtain the maximum dambing margin boundary

with D=1.5%, the Ka should be reduced to around 70% of their original value.

From Fig. 5.8, one can see that even with the same control parameter scenario,
different stability assessment criteria could result in a different optimal control parameter
value. i.e., the optimal B value for maximizing oscillatory stability margin may not be the

optimal for the damping margin.
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Further in Fig. 5.8, with all Ka’s set at 100% of their initial values and with D=1.5%
the difference between the damping margin and oscillatory stability margin is around
260MW. However in other extreme where Ka’s are at 50% of their initial value and with the
same D=1.5%, the difference between the damping margin and the oscillatory stability
margin is only 25MW. In this case even though there is adequate damping you may

experience oscillatory instability problems.

Similarly Fig. 5.9 and Fig 5.10 show the three dimensional view for cases 2 and 3

respectively of section 5.3.
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Figure 5.9 damping margin surface with Ka of generator at bus #30
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In the Fig. 5.10, all the points on the curve B- A have the same damping margin of
1160MW. The curve basically provides the relationship between the damping ratio and §§ to
maintain the same damping margin. This information is valuable to decide optimal control

actions to maintain a specific damping or oscillatory stability margin for changing system

conditions.

1400 - IR .

_______

1350 |~

1300

1250

Damping L.oad Margin (MW)

0 0.2 0.4 0.6
7 Control Parameter Beta

Figure5.10 damping margin surface when Ka of three selected generators
varying

Similar to oscillatory stability margin boundary tracing, the damping margin tracing
technique can also compute the post-contingency boundary without tracing the whole post-
contingency P-V curve. Fig 5.11 shows the simulation result for the damping margin with an

outage of line 3-18. The damping threshold values from the top to the bottom are 0%, 0.5%,

1.0%, and 1.5%.
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Figure 5.11 damping margin with outage of line 3-18

5.4Computational aspects

The above boundary tracing can also be obtained by repeatedly applying the
eigenvalues tracing method described in chapter 4. The process is illustrated in Fig 5.12.

At base case, where B = B,, an eigenvalue tracing method can be applied to identify
the Hopf bifurcation point or damping margin point. The &, in Fig 5.12 represents the
oscillatory stability margin with parameter 8 = ;. This is the starting point of the margin
boundary.

To identify the next margin point on the boundary, one can fix ¢ value as @, and let

B = B,. After solving a power flow, one can get point Bi. At point Bj, one has to calculate

the eigenvalue with a maximum real part to check whether or not the margin point is reached.
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If not, the eigenvalue tracing method has to be applied to trace the P-V curve for the margin

point with 8 = f,.

A 14
—-— Oscillatory Stability Margin

Boundary
—---- Control Parameter Change
—— Eigenvalue Tracing Method
»snn1 Boundary Predictor

= Boundary Corrector

By

Y

a, o, a,
Figure 5.12 Oscillatory stability margin boundary tracing vs. eigenvalue tracing

In the tracing process from point B; to A;, multiple steps are needed. Each step

needs to solve power flow and eigenvalue information.

For the proposed margin boundary tracing method, getting A; from Ao will be faster

than the above process. The boundary tangent can be obtained by solving linear equation
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(5.1.8). (5.1.9) can give an estimation of the boundary point with 5 = 5. From (5.1.10) one

can get point A;.

The major computation involved in boundary tracing is to solve the linear equations

) . OH(X,Y,vg,up,v,,u,,a, f,s) ) o
with matrix . The structure of this matrix is shown below. The
O(X,Y, vy, uup, v, u;,a, B3,5)

predictor (5.4.1) and corrector (5.4.2) have the same matrix.

‘E, Rt o 0 o o0 F F oT&][0]
4 O Gy 0.0 0 0 G G 0 jdr )0
0 0 ! F K :’:;9'_[:’ 0 0 0 V, || |0
0 0!'G, G 0 0 0 0 0 |dg| |0
0 0 Z{S—;Z‘:'B":"FX_"E': 0 0 -7 ldv|=|0
0 0 0 001G Gy 0 0 0 |a]|0
0 0 e 0 070 0 o0 0 |da||O -
0’0 0 0 ¢ O 0 0 0 |dg]||oO
) “ Lds J UL (5.40)
'F, F,L0 0 0 0 E F 0]AX]
;._GE___C:}_E__O____(.)._I _(_)~ 0 G G 0 |AY
0 01 FK E£sI30 0 0 % |M .
0 0iG G0 o 0 0 olm |
0 0 ';_S_:,) 0 -E F, K i 0 0 -Vla|= c
0 0 0 031G G0 0 0 A,
0 0 e 0 0000 0 0 |A
0 0 0 0 e O 0 0 0]|a
- % 145 ] (5.42)

Let’s consider the first 3(m+n) dimension block of the matrix in (5.4.1) or (5.4.2).
There are three diagonal blocks (in dashed squares) and two non-diagonal non-zero block (in

dashed circles). One can see these three blocks on the diagonal line are exactly the same. The

two non-zero off-diagonal blocks are $-/ and —s-/ respectively.
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FX FY

] is known, there won’t be too much
Gy Gy

If the LU factorization of [

computational cost to find the LU factorization of matrix for (5.4.1) or (5.4.2). i.e. solving
this 3(m+n+1) dimension linear equation (5.4.1) or (5.4.2) doesn’t cost too much

computational time.

How to handle a special case which may not appear in practical situations is

presented in Appendix 3.
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Chapter 6 Conclusions

This dissertation proposes novel algorithms for power system oscillatory stability
assessment. An integration based eigenvalue tracing method is proposed to trace any
specified eigenvalue of interest. Also a margin boundary tracing algorithm that can trace not
only the oscillatory stability margin boundary, but also damping margin boundary is
proposed. The eigenvalues tracing method can trace any eigenvalues of interest. An
eigenvalue index is proposed to rank the eigenvalues. This index is helpful for identifying the
rate of change of movement and the direction of movement for these eigenvalues with
respect to change in any parameter of interest. This approach is used to identify Hopf

bifurcation. It is also extended to satisfy minimum damping margin constraints.

The salient points and contributions of this approach are:

e For the first time, the eigenvalue tracing algorithm is introduced into power

system oscillatory stability assessment.

¢ In the oscillatory stability margin identification, existing methods are either
difficult to converge (like the direct method), or comparably slower (like the
secant method). In some base cases, where the eigenvalue with the
maximum real part moves toward the left-hand side on complex plane, the
secant method will predict a negative step length which will prevent this
method from finding margin point. The proposed eigenvalue tracing method
in this dissertation can overcome these disadvantages by introducing the

eigenvalue index. This index can find an eigenvalue which is more likely to



83

cross the imaginary axis than the eigenvalue with the maximum real part.
Similarly, the eigenvalue damping index can help to trace the right

eigenvalue in damping margin identification

e The proposed method avoids repeated calculation of the dominant
eigenvalue for changing operating conditions. It also takes into account the
rate of change as well as the direction of the movement of the eigenvalue in
step length prediction. Thus the entire process to identify oscillatory stability

margin is accelerated.

e The method can be used to get both oscillatory stability and damping ratio

information.

o Eigenvalue and Eigenvector sensitivities are by-products of this approach

e This method is faster and more robust than the secant method, especially for

large scale systems.

Can trace close eigenvalues without any numerical problems

The dissertation discusses the computational advantages of this algorithm in detail,
and demonstrates the potential convergence problems with the secant method. The
eigenvector derivatives can be used to obtain participation factor derivatives. The
participation factors are generally indicative of the relative participations of the respective
states in the corresponding modes (or eigenvalues), so the derivatives of these factors can

further show how this association will change for any parameter variation of interest.
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Without the proposed margin boundary (both oscillatory and damping) tracing
algorithm one has to repeat tracing the P-V curve with a different parameter 8 value to get
the oscillatory stability margin boundary and the damping margin boundary. To get one
margin point on the boundary, one has to search multiple operating points in tracing one P-V
curve. Each operating point requires solving a power flow with Newton- Raphson or other
algorithms. The proposed method can speed-up this process with help from the boundary

predictor and corrector.

The salient points and contribution of this approach are:
e Tangent vector can be used to predict local sensitivity information

e Can estimate the margin for any large change in system parameters faster

than the existing methods.

e The approach provides the relevant information about the nonlinear
characteristics between margin and control parameters, by which one can
find not only the control parameter values to maximize the margin, but also
the control parameter perturbation tolerance, which can help keep the system

more robust

e For the first time, an algorithm to trace the damping margin boundary is

proposed

The eigenvalues tracing and margin boundary tracing methodologies proposed in
this thesis will make contribution to future on-line stability assessment tools for large scale

power systems.
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Data of test case- New England system

1. New England 39 Bus System One Line Diagram

igure A-1: New England 39 bus system diagram

2. The IEEE Format Base Case Power Flow Data of the New England System

BUS DATA FOLLOWS
1 BUS1 1101.0410-13.41
2BUS2 1101.0310-11.22
3BUS3 11 01.0050-13.88
4BUS4 11 00.9858 -14.02
5BUSS 11 00.9920-12.25
6 BUS6 1100.9952-11.41
7 BUS7 11009847 -13.76
8 BUSS8 1100.9839-14.33
9BUS9 11 01.0232-14.60
10 BUS10 11 01.0056 -9.42
11 BUSI1 1 1 01.0009-10.10
12 BUS12 11009872-10.24
13 BUS13 11 01.0009-10.23
14 BUS14 1 100.9940-12.19
15 BUSIS 11 00.9896-13.34
16 BUS16 11 01.0028-12.16
17 BUS17 11 01.0065-13.12
18 BUS18 11 01.0045-13.86
19 BUS19 11 01.0395 -7.87
20 BUS20 11009853 -9.48
21 BUS21 11010112 -9.83
22 BUS22 1101.0381 -544
23 BUS23 11 01.0316 -5.65
24 BUS24 11 01.0015-12.07
11

25 BUS25

01.0458 -10.02

39 ITEMS

0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.00006 0 1
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 2
322.00 12240 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 3
500.00 184.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 4
0.00 000 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 5
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 6
233.80 84.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 7
522.00 176.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 8
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 9
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 10
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 11
8.50 83.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 12
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 13
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 14
320.00 153.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 15
329.40 13230 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 16
000 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 17
158.00 30.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 18
0.00 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 19
680.00 103.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 20
274.00 115.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 21
000 0.00 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 22
247.50 84.60 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 23
308.60 92.20 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 24
224.00 47.20 0.00 0.00 0.000.0000 0.0000 0.0000 0.0000 0.0000 0 25
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0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 1.0475 380.00 -100.00 0.0000 0.0000
0.000.9820 600.00 -300.00 0.0000 0.0000
0.00 0.9831 500.00 -300.00 0.0000 0.0000
0.00 0.9972 500.00 -300.00 0.0000 0.0000
0.00 1.0123 450.00 -250.00 0.0000 0.0000
0.00 1.0493 600.00 -250.00 0.0000 0.0000
0.00 1.0635 500.00 -220.00 0.0000 0.0000
0.00 1.0278 500.00 -220.00 0.0000 0.0000
0.00 1.0265 500.00 -300.00 0.0000 0.0000

0 26

21.0300 -14.69 1104.00 250.00 1000.00 124.37 0.00 1.0300 900.00 -800.00 0.0000 0.0000 0

26 BUS26 1101.0294-11.40 139.00 47.00 0.00 0.00
27 BUS27 1101.0128-13.40 281.00 7550 0.00 0.00
28 BUS28 11010305 -8.01 20600 27.60 0.00 0.00
29 BUS29 11010316 -5.23 283.50 126.90 0.00 0.00
30 BUS30 11210200 -8.97 0.00 0.00 230.00 228.51
31 BUS31 11309820 000 000 000 723.00 280.66
32 BUS32 11209831 -1.58 0.00 0.00 630.00 275.85
33 BUS33 11209972 -280 0.00 0.00 612.00 197.36
34 BUS34 1121.0023 -449 0.00 0.00 488.00 217.74
35 BUS3S 11210493 -0.58 0.00 0.00 630.00 314.70
36 BUS36 11210435 201 000 0.00 540.00 170.64
37 BUS37 1121.0478 -343 000 0.00 520.00 69.56
38 BUS38 1121.025 1.73 000 0.00 810.00 159.60
39 BUS39 11
-999
BRANCH DATA FOLLOWS 48 ITEMS
1 21110 0.003500 0.041100 0.69870 0. 0. 0. 00 0.0000
1 391 110 0.002000 0.050000 0.37500 0. 0. 0. 00 0.0000
1 391 120 0.002000 0.050000 0.37500 0. 0. 0. 00 0.0000
2 31110 0.001300 0.015100 0.25720 0. 0. 0. 00 0.0000
2 251110 0.007000 0.008600 0.14600 0. 0. 0. 00 0.0000
3 41110 0.001300 0.021300 0.22140 0. 0. 0. 00 0.0000
3 181110 0.001100 0.013300 0.21380 0. 0. 0. 00 0.0000
4 51110 0.000800 0.012800 0.13420 0. 0. 0. 00 0.0000
4 141 110 0.000800 0.012900 0.13820 0. 0. 0. 00 0.0000
5 61 110 0.000200 0.002600 0.04340 0. 0. 0. 00 0.0000
5 81 110 0.000800 0.011200 0.14760 0. 0. 0. 00 0.0000
6 71110 0.000600 0.009200 0.11300 0. 0. 0. 00 0.0000
6 11 1 110 0.000700 0.008200 0.13800 0. 0. 0. 00 0.0000
7 81 110 0.000400 0.004600 0.07880 0. 0. 0. 00 0.0000
8 91 110 0.002300 0.036300 0.38040 0. 0. 0. 00 0.0000
9 391 110 0.001000 0.025000 1.20000 0. 0. 0. 00 0.0000
10 11 1 110 0.000400 0.004300 0.07290 0. 0. 0. 00 0.0000
10 13 1 110 0.000400 0.004300 0.07290 0. 0. 0. 00 0.0000
13 14 1 110 0.000900 0.010100 0.17230 0. 0. 0. 00 0.0000
14 151 110 0.001800 0.021700 0.36600 0. 0. 0. 00 0.0000
15 16 1 110 0.000900 0.009400 0.17100 0. 0. 0. 00 0.0000
16 17 1 110 0.000700 0.008900 0.13420 0. 0. 0. 00 0.0000
16 191 110 0.001600 0.019500 0.30400 0. 0. 0. 00 0.0000
16 21 1 110 0.000800 0.013500 0.25480 0. 0. 0. 00 0.0000
16 24 1 110 0.000300 0.005900 0.06800 0. 0. 0. 00 0.0000
17 18 1 110 0.000700 0.008200 0.13190 0. 0. 0. 00 0.0000
17 27 1 110 0.001300 0.017300 0.32160 0. 0. 0. 00 0.0000
21 221 110 0.000800 0.014000 0.25650 0. 0. 0. 00 0.0000
22 23 1110 0.000600 0.009600 0.18460 0. 0. 0. 00 0.0000
23 241110 0.002200 0.035000 0.36100 0. 0. 0. 00 0.0000
25 26 1 110 0.003200 0.032300 0.51300 0. 0. 0. 00 0.0000
26 27 1 110 0.001400 0.014700 0.23960 0. 0. 0. 00 0.0000
26 28 1 110 0.004300 0.047400 0.78020 0. 0. 0. 00 0.0000
26 29 1 110 0.005700 0.062500 1.02900 0. 0. 0. 00 0.0000
28 291 110 0.001400 0.015100 0.24900 0. 0. 0. 00 0.0000
2 301111 0.000000 0.018100 0.00000 0. 0. 0. 00 1.0250
6 311111 0.000000 0.050000 0.00000 0. 0. 0. 00 1.0700
6 31 1121 0.000000 0.050000 0.00000 0. 0. 0. 00 1.0700
10 32 1 111 0.000000 0.020000 0.00000 0. 0. 0. 00 1.0700
12 11 1 111 0.001600 0.043500 0.00000 0. 0. 0. 00 1.0060
12 131 111 0.001600 0.043500 0.00000 0. 0. 0. 00 1.0060
19 201 111 0.000700 0.013800 0.00000 0. 0. 0. 00 1.0600
19 331 111 0.000700 0.014200 0.00000 0. 0. 0. 00 1.0700
20 341111 0.000900 0.018000 0.00000 0. 0. 0. 00 1.0250
22 351 111 0.000000 0.014300 0.00000 0. 0. 0. 00 1.0250
23 36 1 111 0.000500 0.027200 0.00000 0. 0. 0. 00 1.0000
25 37 1 111 0.000600 0.023200 0.00006 0. 0. 0. 00 1.0250
29 38 1 111 0.000800 0.015600 0.00000 0. 0. 0. 00 1.0250
-999

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.9200 1.0800 0.0000 0.9500 1.0500
0.00 0.9200 1.0800 0.0000 0.9500 1.0500
0.00 0.9200 1.0800 0.0000 0.9500 1.0500
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.8750 1.1250 0.0000 0.9500 1.0500
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 0.0000 0.0006 0.0000 0.0000 0.0000
0.00 0.0000 0.0006 0.0000 0.0000 0.0000
0.00 0.0000 0.0000 0.0000 0.0000 0.0000

3. Dynamic Data of the New England System

1

39
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NEW_ENGLAND SYSTEM STABILITY RELATED PARAMETERS OF GENERATOR & EXCITATION & GOVERNOR
Generator transient parameter follows

Num Gen_name Xd Xq X'd X'g Rs T'do T'go Mg Dg

30 BUS30 .0.1000 0.0690 0.0310 0.0690 0.0002 10.2000 0.010 84.000 5.000

31 BUS31 0.2590 0.2820 0.0700 0.1700 0.0002 6.5600 1.5000 60.600 5.000

32 BUS32 0.2500 0.2370 0.0530 0.0880 0.0002 5.7000 1.5000 71.600 5.000

33 BUS33 0.2620 0.2580 0.0440 0.1660 0.0002 5.6900 1.5000 57.200 5.000

34 BUS34 0.6700 0.6200 ©0.1320 0.1660 0.0002 5.4000 0.4400 52.000 5.000

35 BUS35 0.2540 0.2410 0.0500 0.0810 0.0002 7.3000 0.4000 69.600 5.000

36 BUS36 0.2950 0.2920 0.0490 0.1860 0.0002 5.6600 1.5000 52.800 5.000

37 BUS37 0.2900 0.2800 0.0570 0.0910 0.0010 6.7000 0.4100 48.600 5.000

38 BUS38 0.2110 0.2050 0.0570 0.05%0 0.0002 4.7900 1.9600 69.000 5.000

39 BUS39 0.0200 0.0190 0.0060 0.0080 0.0002 7.0000 0.7000 1000.000 10.000

-999

Generator control system ( excitor + AVR + governor ) parameter follows

Num Gen _name Ke Te Se Ka Ta KE£ TE Tch Tg Rg
30 BUS30 1.0000 0.2500 0.0000 20.0000 0.0600 0.0400 1.0000 1.6000 0.2000 0.0500
31 BUS31 1.0000 0.4100 0.0000 40.0000 0.0500 0.0600 0.5000 54.1000 0.4500 0.0500
32 BUS32 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 1.0000 10.0000 3.0000 0.0500
33 BUS33 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 1.0000 10.1800 0.2400 0.0500
34 BUS34 1.0000 0.7900 0.0000 30.0000 0.0200 0.0300 1.0000 9.7900 0.1200 0.06500
35 BUS3S 1.0000 0.4700 ©0.0000 40.0000 0.0200 0.0800 1.2500 10.0000 3.0000 0.0500
36 BUS36 1.0000 0.7300 0.0000 30.0000 0.0200 0.0300 1.0000 7.6800 0.2000 0.0500
37 BUS37 1.0000 0.5300 0.0000 40.0000 0.0200 0.0900 1.2600 7.0000 3.0000 0.0500
38 BUS38 1.0000 1.4000 0.0000 20.0000 0.0200 0.0300 1.0000 6.1000 0.3800 0.0500
39 BUS39 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 1.0000 10.0000 2.0000 0.0500

-999
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Appendix 2: Application of symbolic computing

In proposed eigenvalue tracing method, (4.1.12) needs to be solved.

(Al =F, =21 ~F, 0 vy —v, v ] [Fyve+Fou, ]
M MI-F, 0 =F, v, v |V, | | Fpv,+Fu,
-Gy 0 -G, 0 0 O jug| Gy Vg +Gyu,
0 -G, 0 -G, 0 0 |a,| |G, +GCu,
Vel —v, 0 0 0 0 ji, 0
v Ve 0 0 0 04| | 0
(4.1.12)

The derivative of Jacobian matrix on the right hand side of (4.1.12) is required. The

expression of element on ith row and jth column of Fy is given in (4.1.13)

L Fy X N OFy oY N OFy
YT ax da dY da da

(4.1.13)

In the program code, the explicit expression of Jacobian derivative has to be

included to speed up the code execution time.

To show the complexity of this expression, the code to compute just one element of

F, is shown below:

Fydot (jj*9+2,3j*2+2) =

Fydot (jj*9+2,3)j*2+2) +Tangent (jj*9+1) * ( (Xdprime (genNo) * (Rs (genNo) *X (m+jj*2+1
)*sin(-X (J3*9+1) +X (m+]jj*2+2) ) -Xgprime (genNo) *X (m+jj*2+1) *cos (-

X(j3*9+1)+X (m+jj*2+2)) )/ (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) *2+* (Rs (g
enNo) *X (jj*9+3) -X(jj*9+4) *Xdprime (genNo) -Rs (genNo) *X (m+jj*2+1) *cos (-
X{3j*9+1)+X (m+jj*2+2)) -Xdprime (genNo) *X (m+jj*2+1) *sin (-

X(3J*9+1) +X (m+jj*2+2) ) ) +Xdprime (genNo) * (Rs (genNo) *X (m+jj*2+1) *cos (-
X{(jj*9+1) +X (m+jj*2+2) ) +Xgprime (genNo) *X (m+jj*2+1) *sin (-

X(jF*9+1) +X (m+jj*2+2)) )/ (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) *2+* (-

Rs (genNo) *X (m+jj*2+1) *sin (-
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X{(jJ*9+1) +X (m+jj*2+2) ) +Xdprime (genNo) *X (m+jj*2+1) *cos (-

X{(j3*9+1) +X (m+jj*2+2)) ) +Xdprime (genNo) * (-Rs (genNo) *X (m+jj*2+1) *cos (-
X(33*9+1) +X (m+jj*2+2) ) -Xgprime (genNo) *X (m+jj*2+1) *sin (-

X{j3*9+1) +X (m+jj*2+2))) / (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) *2* (Rs (g
enNo) *X (m+j§*2+1) *sin (-X (J3*9+1) +X (m+jj*2+2)) -

Xdprime (genNo) *X (m+jj*2+1) *cos (-X (Fj*9+1) +X (m+jj*2+2) ) ) - (X (Jj*9+3) -

Xdprime (genNo) * (Rs (genNo) *X (jj*9+4) +X (jj*9+3) *Xgprime (genNo) +Rs (genNo) *X (m+
JJ*241) *sin(-X{(jj*9+1) +X{m+jj*2+2) ) -Xgprime (genNo) *X (m+jj*2+1) *cos (-
X(j3*9+1) +X (m+jj*2+2))) / (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) ) * (-

Rs (genNo) *X (m+jj*2+1) *cos (-X (J]*9+1) +X (m+jj*2+2) ) -

Xdprime (genNo) *X (m+jj*2+1) *sin (-

X(jF*9+1) +X (m+jj*2+2))) / (Rs (genNo) “2+Xdprime (genNo) *Xgprime (genNo) ) -
Xgprime (genNo) * (-Rs (genNo) *X (m+jj*2+1) *cos (X (Jj*9+1) +X (m+jj*2+2) ) -

Xdprime (genNo) *X (m+jJj*2+1) *sin (-

X{jj*9+1) +X (m+jj*2+2)) )/ (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) “2* (Rs (g
enNo) *X (jJi*9+4) +X (jj*9+43) *Xgprime (genNo) +Rs (genNo) *X (m+jj*2+1) *sin (-
X(J3*9+1) +X (m+jj*2+2) ) -Xgprime (genNo) *X (m+jj*2+1) *cos (-

X(j3*9+1) +X (m+jj*2+42) ) ) -Xgprime (genNo) * (Rs (genNo) *X (m+jj*2+1) *sin (-
X(JF*9+1) +X (m+jj*2+2) ) -Xdprime (genNo) *X (m+jj*2+1) *cos (-

X{jj*9+1) +X (m+jj*2+2)) ) / (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) *2* (-

Rs (genNo) *X (m+jj*2+1) *cos (-X(jJ*9+1) +X (m+jj*2+2) ) -

Xgprime (genNo) *X (m+jj*2+1) *sin (-X (jj*9+1) +X (m+jj*2+2) ) ) -Xgprime (genNo) * (-
Rs (genNo) *X (m+jj*2+1) *sin (-

X(3j*9+1) +X(m+jj*2+2) ) +Xdprime (genNo) *X (m+jj*2+1) *cos (-

X(jj*9+1) +X{m+3j*2+2)) )/ (Rs (genNo) “2+Xdprime (genNo) *Xgprime {(genNo) ) *2* (Rs (g
enNo) *X (m+jj*2+1) *cos (-

X(33*9+1) +X (m+jj*2+2) ) +Xgprime (genNo) *X (m+jj*2+1) *sin (-

X(j*9+1) +X (m+jj*2+42))) - (X (jj*9+4) +Xgprime (genNo) * (Rs (genNo) *X (jj*9+3) -
X(jj*9+4) *Xdprime (genNo) -Rs (genNo) *X (m+j3*2+1) *cos (-X (7j*9+1) +X (m+jj*2+2) ) -
Xdprime (genNo) *X (m+jj*2+1) *sin (-

X(j3*9+1) +X (m+jj*2+2)) )/ (Rs (genNo) *2+Xdprime (genNo) *Xgprime (genNo) ) ) * (Rs (ge
nNo) *X (m+jj*2+1) *sin (-X (Jj*9+1) +X (m+jj*2+2) ) -

Xgprime (genNo) *X (m+3jj*2+1) *cos (-~

X{(j3*9+1) +X (m+3j*2+2)) )/ (Rs (genNo) “2+Xdprime (genNo) *Xgprime (genNo) ) ) /Mg (gen
No) ) ; :

Without the symbolic computing, one has to derive similar expression for all

F, Fy}

elements of [ Gx Gy

It’s very difficult for any one to get this result manually without any mistakes.
During the programming process of proposed eigenvalue tracing algorithm, we found a

solution based on MATLAB symbolic computing functions.
Let’s illustrate this process by an example

The MATLAB code consists of three lines:
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syms X
y=x"3;

ydot = jacobian(y,x)
The execution result is:

ydot = 3*x"2

First line defines x as symbolic variable. The second line defines y=x’. The third

d
line calculate the Ex)i with MATLAB provided function “jacobian”. The result is 3x*.

In our programming for eigenvalue tracing, the explicit expression of derivative of
Jacobian matrix is derived from MATLAB symbolic computing. This has helped make our
code more mistake-proof and speed-up the programming process. In the future industry
application of this algorithm, this symbolic technique is suggested to help produce source

code.



96

Appendix 3: Some special cases in oscillatory stability margin
boundary tracing

In all simulated cases, the critical eigenvalue in first margin point always is the
critical eigenvalue at every traced margin point during the entire tracing process.

For some very nonlinear system, theoretically there is the possibility that one pair of
conjugate complex eigenvalues is the critical eigenvalue with[/5,, 5,1, and the other different

pair of conjugate complex eigenvalues becomes the critical eigenvalue with[5,, 5, ].

The critical eigenvalue could be switched as shown in Fig 1. The thick line from

point A to D and C is actual margin boundary.
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Figure 1 When Margin Boundary with Two Critical Eigenvalues

To handle this situation, we improved our procedure as follow:

1) With predictor and corrector, tracing margin boundary from point A to B
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2) At the last traced margin point, compute system dominant eigenvalue,
if no other eigenvalue has crossed imaginary axis, the problem is solved.
Otherwise, go to step 3).

3) With the eigenvalue tracing method presented in Chapter 4, find the actual
oscillatory stability margin, (which is shown as point C in Fig 1). Trace margin boundary
backward and/or forward with 8 value decreasing or increasing, until margin value equal to
previous traced margin boundary with the same 8 value. (This process can be shown as from

point C to point D in Fig 1.) Then, go to step 2).
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